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ABSTRACT 

This Is a report of the work performed by the General Research 

Corporation during the Advanced Software Quality Assurance contract. 

Research was conducted in four major areas: 

1. Assertions, verification conditions and consistency proof 

2. Design of an executable assertion language and the 

development of a preprocessor to implement this language 

3. Development of a Software Quality Laboratory 

4. Evaluation of existing languages as applied to BMD software 

problems 

This report gives a methodology for verifying software. The preprocessors 

which allow assertions to be placed in FORTRAN and PASCAL programs are 

described. The static analyses developed as part of the Software Quality 

Laboratory are also described and examples are given of their use. The 

Concurrent PASCAL programming language is applied to a generic model of a 

BMD software system. 
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1    INTRODUCTION 

In the current contract, GRC's work in advanced quality assurance 

was concentrated on developing a capability for the formal verification 

of large real-time systems.  It was found In the course of this work 

that some techniques useful In the formal verification process are also 

applicable to the problem of detecting errors arising from erroneous 

sensor data or hardware failures.  In addition, languages that appear to 

promise higher software quality were evaluated. 

f 

1.1  BACKGROUND 

This effort was an outgrowth of an initial study, the Reliable 
1 2 

Software Study, ' which suggested a number of techniques that could lead 

to Improved software.  Emphasis has been placed on techniques that orl- 
3 4 5 

ginated with Floyd, ' were shown to be useful by King,  and further 
6-9 

developed by others." Specific  costly errors,  such as  those described 

by Osterwc 

addressed. 

by Osterwell and Fosdick       and  in a study by Logicon,       were also 

Since  the effort was directed  towards the verification of real-time 

programs,  it was decided that  the  target languages should be "real."    By 

real,   it  is meant that a compiler exists  for the language such  that a 

program written in it can execute normally on a machine.     This  is a strong 

criterion that most others have not chosen to meet.    The  target  languages 

were FORTRAN and PASCAL.     As   far as  the techniques are concerned,   their 

analysis appears very similar,  requiring only separate front ends.     Each 

of the languages has a dialect—IFTRAN for FORTRAN and Verifiable PASCAL 

for PASCAL.     Preprocessors were developed to generate standard FORTRAN 
12 

from IFTRAN and standard PASCAL      from Verifiable PASCAL.     The resulting 

programs execute on computers  such as  the CDC 6400 and CDC  7600 which 

have standard compilers. 

The eystera that actually performs  the analysis was built using 

IFTRAN. 



1.2  ACCOMPLISHMENTS 

GRC's work has resulted in the establishment of the Software Quality 

Laboratory.  This facility contains tools which can be used to detect 

common semantic errors, assist in testing, formally verify computer 

programs, and provide for fault tolerance. 

The facility has been designed to analyze both FORTRAN and PASCAL. 

Extensions to both these languages have been designed and implemented so 

that common errors can be detected and formal verification is possible. 

The languages with their extensions have been translated into exe- 

cutable code.  The redundancy present in the executable extensions provides 

for the detection of errors during program execution. This capability will 

be used in future work in fault tolerance. 

Since one of the goals of this work has been to apply formal verifi- 

cation to practical programs, verification condition generators were 

implemented for both languages.  The generators handle logical, fixed 

point, character, and floating-point data types. Multidimension arrays 

are presently handled and PASC. iL records will be handled in the near 

future. 

' 

The verification process divides programs into very small segments 

each of which is verified independently of all other parts.     Each verifi- 

cation condition is tightly coupled to  the code segment with which  it is 

associated.     Both the code segment and   the verification condition can be 

listed on a printer and/or displayed on an interactive terminal. 

A slmplifier which contains many standard simplification rules can 

be  invoked to cause automatic sinnlification of verification conditions. 

Rules which are not in the slmplifier can be applied to individual 

verification conditions.    These  rules  can be text replacement rules or 

1 



pattern matching rules.  They can be applied only once or saved as an 

axiom to be used again. 

We have also looked at the classes of concurrency present in a 

BMD system and at the possibility of using Co* current PASCAL as a 

language for a BMD software system.  The advantages and disadvantages 

of Concurrent PASCAL for this application have been noted. 

1.3  REPORT ORGANIZATION 

Section 2 outlines how to prepare software for verification.  It 

contains an overall description of the Software Quality Laboratory, with 

some examples of how the various parts can be used to validate software. 

It also contains a set of recommendations for the development of quality 

software. These have resulted from our experience with the techniques 

discussed in this report. 

t 
Section 3 describes the language extensions that were made to FORTRAN 

and PASCAL so that the software written in those languages could be 

verified.  Section 3 emphasizes the translation of the extensions into 

executable code. These same languages are the ones for which the static 

analysis tools and formal verification techniques a "e available. 

# 

Section 4 describes techniques that can be used to remove errors 

before a complete verification can be completed. These techniques could 

be implemented In a super-compiler. However, they were implemented in a 

separate process which allowed this work not to duplicate the compiler, 

allowed the assumption that syntax errors had been removed, and provided 

data which was used later in the formal verification process. 

Section 5 shows how quality can be Improved In the testing process 

through the use of coverage tests and executable assertions. Also included 

is a discussion as to how the executable assertions can be used to derive 

loop invariants and to detect faults at execution time. 

MPPBMHMB 



Section 6 is concerned with the formal verification process. Once 

software has been shown to be free of syntax and major categories of 

semantic errors using the techniques described in previous sections, it 

is ready for formal verification.  This section describes the process of 

verification from the design and Implementation of the verification 

condition generator and simplifier to examples of validated programs. 

w. JF 

Section 7 discusses the possible application of Concurrent PASCAL 

to a large software system.  The advantages of and disadvantages of 

Concurrent PASCAL are demonstrated with an example of its application to 

a real-time simulation program. The types of concurrency which are 

present in a BMD system are presented, and assertions for such programs 

are given. 

\ 

Appendixes are provided to describe the formal grammar of Verifiable 

PASCAL (Appendix A), the translation templates for the generation of 

PASCAL from Verifiable PASCAL (Appendix B), the translation templates 

for the generation of FORTRAN from IFTRAN with assertions (Appendix C), 

and the formal verification of sample programs (Appendix D). 

D 
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2    METHODOLOGY FOR VERIFICATION 

As the Software Quality Laboratory evolved, it became obvious that 

it was not possible to verify software that had not been written with 

verification in mind.  This section outlines how software can be prepared 

for the verification process, shows what can be accomplished through 

several stages of verification, and how the tools available for proofs of 

correctness can be used to provide designed-in quality.  The various 

steps in this verification procedure are shown in Fig. 2.1. 

F 

2.1  RECOMMENDATIONS 

Based upon GRC's experience to date in the development and use of 

the Software Quality Laboratory, the following recommendations, which 

should lead to higher quality software, are made: 

1. Use small modules.  Designs that use small modules with as 

few global variables and paths as possible will aid the 

verification process. 

2. State data access rights.  Every global variable should be 

declared either an input, output, or both. 

3. Limit variable rights.  When computationally feasible, keep 

inputs separate from outputs. 

4. State units. Every variable should have its units declared. 

5. State ranges.  Every variable should have its range of values 

declared at module entry and exit. 

6. State invariants. When a relation between variables is known 

to be always true, declare that relation. Try to design 

algorithms that lend themselves to relations that are always 

true rather than almost always true. 

7. Place constraints on results.  Every output variable should be 

bound as closely as possible to an expression in terms of the 

input variables. 

§ 
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Fl gure 2.1.  Steps in Verification Procedure 



• 

8. Use tools to eliminate errors. 

a. Use static analysis tools to eliminate unreasonable 

errors before testing single modules. 

b. Make sure the execution test step checks each combination 

of paths in a module before integration. 

c. Use static analysis tools to check module interfaces 

before testing modules together. 

d. Turn on executable assertions during execution test. 

9.   Perform formal verification. Use assertions developed during 

testing for formal verification. 

I/' 

2.2  VERIFICATION WITHOUT REDUNDANCY 

The key characteristic of verifiable software is redundant informa- 

tion that is provided to allow a checking process between the redundant 

infoifjiation and the software itself. This is not unlike the systems used 

in accounting which use double entries to provide a check.  If there is 

no redundant information, there is little that can be done to verify the 

software. What is normally done instead is to run a set of test cases 

for which answers are known. Unfortunately, the testing approach cannot 

hope to completely verify large programs for there are far too many 

possible combinations of paths through them and too many possible combina- 

tions of variables to ever test all paths with all values.  Since existing 

systems have not been built with verifiable software, we have the situation 

in large existing programs where 54% of the errors are found after accept- 

ance test and 50% of the life cycle cost has been assigned to the time 

period following acceptance tests.   This time period, which is often 

named the "maintenance" phase of the project, does not "maintain" the 

software in its delivered state, but in fact tries to fix the errors that 

are found after the software should be error-free. 



6 

There are a few valuable checks that can be made without redundant 

information.  The only check currently in use by most developers of large 

systems is the syntax check which checks that every statement in the pro- 

gram satisfies the rules of the programming language used.  Statements 

that do not satisfy the rules are designated as being in error, and 

presented, along with the program listing, in a report known as the 

diagnostic report.  It is assumed that the programmer will correct these 

problems before proceeding.  As a result, most large systems today pre- 

vent the programmer from testing a program before removing the syntax 

errors.  Since syntax errors are so easy to detect at an early stage in 

the program development, they are not regarded as serious or costly. The 

Software Quality Laboratory has taken the approach that other errors (due 

to an unreasonable sequence of statements) should also be reported to the 

programmer.  This would be done in a fashion similar to the diagnostics 

report so that these simple (but often costly) errors can be removed at 

the same time as the syntax errors and with as little effort.  The main 

difference between the syntax errors detected by a language processor and 

the simple, unreasonable errors found by the Software Quality Laboratory 

is that a sequence of statements must be examined rather than a single 

statement. These errors are then reported in terms of the groups of 

statements that could have caused the error, rather than a single statement 

The unreasonable errors that do not require redundant information 

are the set/use errors, mode errors, infinite loop errors, external 

reference errors, and unreachable code errors.  The method of detecting 

and reporting each of these errors is fully described in Sec. 4.  This 

section briefly introduces the analysis that is performed by means of 

examples. The unreasonable errors are removed in the step shown in 

Fig. 2.1 labeled STATIC ANALYSIS. This step is done after the syntax 

analysis. 
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2.2.1 Set/Use Errors 

Two types of set/use errors are detected.  One of the most common 

is use of a variable before it is set.  This is usually due to forgetting 

to Initialize the variable.  The other is that the variable is set, but 

is not used.  This last error is often due to a misspelling of the 

variable. This brief program demonstrates some common set/use errors in 

IFTRAN and PASCAL. 

f 

SUBROUTINE AVER(A, N, ANS) 

INTEGER N, I, J 

REAL A(l), ANS, SUM 

J = 1 

WHILE (I .LE. N) 

SUM - SUM + A(I) 

1=1+1 

END WHILE 

ANS - SUM/FLOAT(N) 

RETURN 

END 

PROCEDURE aver   (VAR a   :   ARRAY[l..n]  OF real; 

VAR ans   :   real); 

VAR i,  J   :   integer; 

sum :   real; 

BEGIN 

j  := i; 

WHILE  i  <« n DO 

sum  := sum + a[1]; 

i   :-  i + 1 

END WHILE; 

ans   ;■ sum/n 

END; 

IFTRAN Set/Use Errors V-PASCAL Set/Use Errors 

The program shows three set/use errors that will be detected by the 

Software Quality LaÖoratory.     The variables  I and SUM are not initialized, 

although they are used in a WHILE loop,  and the variable J  is set but not 

used. 

2.2.2    Mode Errors 

If we had the statement 

ANS - SUM/N 

rather than 

ANS =- SUM/FLOAT (N) 



a mode warning would be produced as well, since real and integer variables 

should not appear in the same expression. This error is more important 

in the multi-module case where one routine interfaces with another, as in 

these programs. 

J 

PROGRAM  STAT(INPUT,   OUTPUT) 

INTKGER DATA(10),   I,   M,   N 

READER  ■   5 

PRIN -  6 

N  "   10 

READ   (READER.   1)(DATA(I),   I  -   1,   10) 

F0RMAT(I5) 

CALL AVER(DATA,   N,   RESULT) 

WRrrE(PRIN,   2)   RESULT 

FORMAT(F6.2) 

STOP 

END 

IFTRAN Multi-Module Mode  Error 

PROGRAM statdnput,   output); 

CONS  n =   10; 

VAR data   :   ARRAYfl..n]   OF  Integer; 

result : real; 

i, m : Integer; 

(♦PROCEDURE aver goes here*) 

BEGIN 

FOR i := 1 TO n DO 

read(input, data[ll) 

END FOR; 

aver(data. result); 

write(output, result) 

END. 

V-PASCAL Multi-Module Mode 
Error 

The program STAT invokes AVER to calculate the average of ten data 

values. Unfortunately, AVER expects that the data is real while STAT 

provides integer data. The result, of course, would be erroneous if the 

program were ever executed. 

One can argue that some modern compilers, notably PASCAL, provide 

this facility for mode checking. To do so they require that every module 

be compiled together. As a result, a program with 10 lines of code has 

not been written using such languages. The static analysis facility is 

concerned with the analysis of systems with very large programs (e.g., 

10 lines of code), hence it was believed important to provide checking 

of external modules after syntax errors had been removed. 

y : 

10 



2.2.3    External Reference  Errors 

Another costly error which  is detectable without  redundant  informa- 

tion is  the misuse of  external  routines with  the  incorrect number of 

parameters.     If,   for  example,   the  IFTRAN CALL statement had been 

CALL AVER   (DATA,   N,   RESULT,   FLAG) 

or  the V-PASCAL statement had been 

aver   (data,   result,   flag); 

the error report would have indicated that the external routine did not 

have the same number of parameters. 

i 

2.2.4    Infinite Loop  Errors 

Infinite loops often result because on one path  the control variable 

to exit the loop was not modified.     If this is  the case',  an error report 

listing the problem loop is given,  as shown below. 

WHILE  (M .LT.  N) 

I -   (M + N)/2 

IF  (X  .LT.  A(I)) 

N -  I 

ORIF   (X  .GT.   A(I)) 

M =  I 

ELSE 

LOOKUP - I 

END IF 

END WHILE 

IFTRAN Infinite Loop Error 

WHILE tn < n DO 

i. := (m + n) DIV 2; 

IF x < a[i] THEN 

n :■ I 

ORIF x > a[i] THEN 

m :=■ I 

ELSE 

lookup := i 

END IF 

END WHILE 

V-PASCAL Infinite Loop Error 

t 

Once entered, the above loop would not exit if X is equal to some 

element In the array A between A(M) and A(N) since neither M nor N is 

modified once that element is found.      ^ 



2.2.5 Unreachable Code Errors 

Another costly error Is unreachable code. This is costly because 

the expense of designing, preparing, and storing the code could have been 

avoided if it is not needed. On the other hand, if it is meant to exe- 

cute under some circumstances, then the fact that it cannot be reached is 

an error. Structurally unreachable code is most common in large unstruc- 

tured programs with unconditional transfers. In the example shown below, 

statement 300 is unreachable. 

i 

REAL FUNCTION DISCR(A, B, C) 

REAL A, B, C. D 

D - A**2 - A.0*B*C 

IF (D .LT. 0.0) 

GO TO 100 

ELSE 

GO TO 200 

END IF 

300 DISCR - 0.0 

GO TO A00 

100 DISCR - -D 

GO TO 400 

300 

200 DISCR - 0 100 

400 RETURN 

END 200 

400 

FUNCTION dlscr (a, b, c : real) : real; 

LABEL 100, 200, 300, 400; 

VAR d : real; 

BEGIN 

d :- a*a - 4.0*b*c; 

IF d < 0.0 THE«) 

GOTO 100 

ELSE 

GOTO 200 

END IF; 

discr :■ 0.0; 

GOTO 400; 

discr !■ -d; 

GOTO 400; 

dlscr ;= d 

END; 

IFTRAN Unreachable Code V-PASCAL Unreachable Code 

2.3  VERIFICATION WITH REDUNDANCY 

While the preceding errors can be found without the need for redun- 

dant Information, the errors most difficult to find require additional 

information specifically for program verification. The elements of this 

information are known collectively as assertions.  Every assertion added 

to a program allows checks to be performed that cfm eliminate difficult- 

12 
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to-find errors.  There are several formo of assertions.  Some are rela- 

tively easy to state and are merely the concrete, expression of a designer's 

normal thoughts about a program.  Some are more difficult to state because 

designers do not normally take into account all the possible values that a 

variable can take on. Finally, some are very difficult to state because 

they require a statement of the assumptions upon v;hich a design is based. 

Primarily because some assertions are more difficult to state than 

others, the Software Quality Laboratory is able to accept a partially 

asserted program and use these to detect some errors.  This is similar to 

the early detection of hardware errors where, due to the difficulty of a 

complete check, parity checks are made on memories assuming only a single 

bit per word could be in error. 

f 

2.3.1 Asserted/Actual Use 

One of the easiest assertions to state is one of the most powerful 

in checking the correct usage of variables between modules. A common 

error is the use of a variable as an input to a routine when it is an 

output, or vice versa.  In languages where a large number of variables 

are said to be "known" to the program, as in FORTRAN with its COMMON 

blocks or in PASCAL with its global variables, errors in the misuse of 

variables are costly to find. 

In order to aid in checking that each variable is used correctly, 

the INPUT,OUTPUT assertions were designed and implemented both to provide 

an error detection capability before execution of the program and a trace 

of the input and output variables during test runs. The error detection 

capability is further discussed in Sec. 4 and the trace capability is 

discussed in Sec. 3. Basically, what is checked is how the assertion 

that states how a variable is to be used in a given module matches with 

its actual use. For example, consider a routine TIMES that multiplies 

A and 3 together and stores them in C: 

mmmm liAWHVHf.«•»#■»" "^WH^ " 
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SUBROUTINE TIMES (A, B, O 

INTEGER A, B, C 

COMMENT *** INPUT ASSERTION *** 

INPUT (/IMTEGER/A, B) 

C - 0 

WHILE (B .CT. 0) 

C = C + A 

B = B - 1 

END WHILE 

COMMENT *** OUTPUT ASSERTION *** 

OUTPUT (/INTEGER/C) 

RETURN 

END 

PROCEDURE times (VAR a, b, c : Integer), 

BEGIN 

(*** INPUT ASSERTION ***) 

INPUT a, b; 

u := 0; 

WHILE b ■ 0 DO 

c := c + a; 

b := b - 1 

END WHILE; 

(*** OUTPUT ASSERTION ***) 

OUTPUT c 

END; 

IFTRAN  Input/Output  Error V-PASCAL Input/Output  Error 

I 

An error would be reported since the value of B is changed. Hence B is 

not just an input, it is also an output. 

More important is the capability for checking that variables are 

used correctly across modules.  In the following example, the variable 

ANS is asserted to be used both as an INPUT and as an OUTPUT.  It is 

intended that the CALL will compute ANS times F and store the result 

in ANS, but because the TIMES module expects ANS to be used only as an 

INPUT as the first parameter, and only as an OUTPUT as the third para- 

meter, errors would be reported.  In this example, note that since TIMES 

sets the OUTPUT variable C to zero, ANS would also be set to zero and 

the result would be zero. Such errors can be extremely difficult to find 

if several levels of a subroutine hierarchy are involved. 

1A 



INTEGER ANS,   F ans,   f   :   integer; 

COMMENT ***  INPUT ASSERTION *** 

INPUT   (/INTEGER/ANS,   F) 

(***  INPUT ASSERTION ***) 

INPUT ans,   f; 

CALL TIMES  (ANS,  F,  ANS) times  (ans,   f,   ans); 

COMMENT *** OUTPUT ASSERTION *** 

OUTPUT   (/INTEGER/ANS) 

(*** OUTPUT ASSERTION ***) 

OUTPUT ans; 

IFTRAN  Input/Output 
Multimodule Error 

V-PASCAL  Input/Output 
Multimodule  Error 

t 2.3.2 Units Consistency 

Another simple-to-state but very powerful assertion is the UNITS 

assertion which is used to check that Units are consistent throughout a 

program. This is further discussed in Sec. 4, but a brief example is 

appropriate here. 

fa/: m 

The units check is one that everyone trained in the physical 

sciences has been urged to apply.  Basically, it prevents apples being 

assigned to oranges, miles being assigned to feet, dollars being added 

to pounds, and other similar but troublesome errors, as demonstrated 

here: 

15 
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WMUS Ht C0$ 
i 

■.lilKulllNI   I'AYHHI    IHKs,   H.M I ,   I'AY,   1 AX) 

IUAI   MRS.   KAit ,   I'AV,   IAK 

MMMINI    •**   PNIis   A^SIHI iltN   *■** 

ItNITS  (HRS -  HOUMS,   RATI   ■  linl.l AKS/H{«n,   PAS   •   milJAH' 

« IAX - mil.I «ts/liol i AlC-l 

I'AS   -   HRS«KAII    -   TAX 

KITIIKN 

'HOCEDt'RK  prtvrnl   Oirs   i   re.il  UNITS hmir«; 

(••«  I'NiTS ASSKRTION PAB1  Hf TVI'f. IIRXAKAT lll,N ••*) 

rait   :   ri.i\  I'.NI (S J.il l,irt/li..iir, 

VAR  p.jv   :   r.-.il   UNITS dnl lar^; 

t.iK   :   n-nl   I NITS  J"t him/d,'! l.i") ; 

Bi.ClN 

pflv   :"   hrs*r.itf  -   tttx 

END; 

1FTRAN Units Error V-PASCAL Units Error 

Because the UNITS of TAX do not match the UNITS of the other terms in the 

expression, an error would be reported. One can regard the UNITS asser- 

tion as a very strong type declaration.  Designers are accustomed to 

specifying the type of arithmetic that their machine is using. Many 

recognize the dangers of mixed mode arithmetic, and the advantages of 

checking to verify that only one kind of arithmetic is actually used in 

an expression.  However, here the dangers of allowing a variable named 

MONEY expressed in dollars at one time and at another time being expressed 

in cents have been overlooked.  In IFTRAN a separate UNITS statement is 

used for the UNITS assertion.  In V-PASCAL, the UNITS assertion is part 

of the type declaration. 

") 

All the errors and assertions discussed to this point can be found 

once syntax analysis by a compiler has been completed, and before the 

program Is submitted for an execution test. 

2.3.3 Logical Assertions 

There are additional assertions which can be used in the execution 

test (see the EXECUTION step In Fig. 2.1) and which can also be used in a 

correctness proof. 
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The easiest to use of the additional assertions is the INITIAL 

assertion.  The INITIAL assertion, which is more fully described in 

Sees. 3 and 5, is meant to provide a means for explicitly stating the 

initial conditions on variables.  This is most often a limitation on 

the range that a variable can take on.  For example, the TIMES program 

presented in this section would not operate correctly unless B >^ 0 . 

This condition can be stated in the INITIAL assertion by placing, as 

the first e-xecutable statement in the program, 

INITIAL (B .GE. 0) 

IFTRAN 

INITIAL b >- Oj 

V-PASCAL 

which will ensure that on every entry to the routine, the second argument 

is not less than zero. 

One might also note that the TIMES program would not work correctly 

if the result of A*B were too large for the machine. This error, known 

as fixed-point overflow, is not detected on many machines and as a result 

can be a costly error to locate. One way to state an initial assertion 

to prevent undetected overflow in the TIMES program would be to ensure 

that the sum of the powers of each of the input values is less than the 

largest number that can be represented in the machine. We would then 

represent the assertion by 

IFTRAN 

INITIAL   (B   .GE.   0   .AND.   POWER(A)  + POWER(B)   .LT.   MAX?) 

V-PASCAL 

INITIAL b >= 0 AND power(a) + power(b) < maxp; 

For example, in a small computer with only 16-bit words, MAXP would be 

15.  In a computer with 60-blt wordü, MAXP would be 59. 

POWER is a function that returns which power of 2 is greater than 

or equal to the input value 

„POWER 
I > A 

,P0WER-1 
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Any time that an assertion Is not true, an exception report is 

printed stating which assertion in which module is in error.  Provision 

has also been made for allowing a block of code to be invoked in case an 

assertion is not true.  The block of code can be used for example to 

correct the condition that caused the exception or to print out more 

pertinent error messages. 

By placing additional conditions on input variables, more checks 

can be made that prevent errors.  When there is no condition stated on 

an input variable, it is equivalent to stating that any value from the 

smallest possible represented by the machine to the largest possible 

will not cause an error.  Since this is a very unlikely situation, 

thought should be given to just what conditions are being assumed by the 

designer.  For example, In a particular payroll program it might be known 

that a person can never work more than 168 hours between checks, that the 

pay rate can never be more than $25.00 per hour, and that the tax rate 

can never be more than 50%. We could state this in an assertion as 

IFTRAN 

INITIAL   (HOURS  .LE.   168   .AND.   RATE  .LE.   25.00  .AND.  TAX 

.LT.   0.50) 

V-PASCAL 

INITIAL hours <= 168 AND rate <- 25.00 AND tax < 0.50; 

if the input variables were HOURS, RATE, and TAX.  This would help pre- 

vent errors such as might result from reading or punching a time card 

incorrectly. 

Besides stating assertions on the input variables with an INITIAL 

assertion, it is also possible to state assertions on output variables 

with a FINAL assertion. As with the INITIAL assertion, the FINAL 

assertion can also be used to check on ranges of output variables such 

as in a payroll program to check that an employee is not paid too much 

or too little, 

") 

1 
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IFTRAN 

FINAL (PAY .LT. 500.00 .AND. PAY .GT. 40.00) 

V-PASCAL 

FINAL pay < 500.00 AND pay > A0.00; 

or in a flight control program to check that an airplane Is not too high 

or too low 

IFTRAN 

FINAL (HEIGHT .LT. MAXALT .AND. HEIGHT .GT. MINALT) 

V-PASCAL 

FINAL height < maxalt AND height > mlnalt; 

or in a chemical processing program to check that the calculated 

temperature denotes the liquid state 

IFTRAN 

FINAL (TEMP .LT. BOIL .AND. TEMP .GT. FREEZ) 

V-PASCAL 

FINAL temp < boil AND temp > freez; 

or in an airline reservation system to denote that the number of seats 

remaining is reasonable 

IFTRAN / 

FINAL (SEATS .LT. 425 .AND. SEATS .GE. 0) 

V-PASCAL 

FINAL seats < 425 AND seats > 0; 

It is better to state acceptable ranges of output variables than 

not to state anything about a variable so that obvious problems can be 

detected.  However, it is best if possible to state the results of the 

module in terms of the input variables so that the assertion can be 

used in a formal verification.  This is not very difficult to do if, 

for example, a series approximation is being used and the error term 

is known or if the Inverse function is known. 

19 



For example, if the module computed the square root of an Input 

variable x and the result was in y, the final assertion could be: 

1FTRAN 

FINAL (Y**2 .EQ. X) 

V-PASCAL 

FINAL y*y = x; 

which uses the operation of raising to a power of 2 as the inverse 

operation of square root. 

In the TIMES module given previously the final assertion could be: 

IFTRAN 

FINAL (C .EQ. A*B) 

V-PASCAL 

FINAL c = a*b; 

t 
A check on the calculation of the altitude of a plane might be 

IFTRAN 

FINAL (ALT**2 + GND**2 .EQ. RANGE**2) 

V-PASCAL 

FINAL alt*alt + gnd*gnd ■ range*i'ange; 

The object of a FINAL assertion is to place as tight a condition 

on an output variable as possible.  In the examples shown, an equality 

relation was used. This is the strongest relation that can be used. 

However, in other cases a bound is expressed.  For example, it might be 

necessary in a floating point machine to state a relative bound on a 

result such as 

f 

IFTRAN 

FINAL (Y**2 - X .LT. 3.0E - 10*X) 

20 
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J 
V-PASCAL 

FINAL y*y - x < 3.0e - 10*x 

where 3.0e - 10*x is the error bound of the algorithm. 

The FINAL assertion is meant to provide a facility for specifying 

a program's function.  When it thoroughly specifies all the outputs of 

the routine, it can be used in a formal program verification as described 

in Sec. 6.  When it partially specifies the outputs, it can be used during 

execution test as described in Sec. 5 for fault detection and assertion 

refinement. 

\J 
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3    LANGUAGE EXTENSIONS AND IMPROVEMENTS 

The Statement of Work requirement to produce verifiable software 

written in FORTRAN or PASCAL has been met by GRC, in part, by improving 

the readability of the code and by adding features to support automated 

verification.  This section describes a number of changes which respond 

to these needs. The language changes fall into several categories: 

• Improved control structures, which are easier to write and 

which result in more readable code 

• Executable assertion statements (ASSERT, INITIAL, FINAL), 

which may be used to report assertion exceptions during 

testing and can also be used by a program verifier 

• Data access statements (INPUT, OUTPUT), which qualify or 

limit the access rights and operations on data by explicitly 

specifying the input and output variables 

• Unit qualifiers for variables, which declare the physical 

units in addition to any type declarations, thereby making 

units consistency checking possible 

These capabilities are implemented with preprocessors which accept as 

input source code written In an extended language (IFTRAN or V-PASCAL) 

and generate a standard language (FORTRAN or PASCAL) for compilation. 

Figure 3.1 is sample IFTRAN jprogram showing the assertions and some con- 

trol constructs. A portion of a PASCAL program that uses some of the 

language enhancements is shown in Fig. 3.2. 

3.1  IMPROVED CONTROL STRUCTURES 

3.1.1 IFTRAN Control Conatructs 

Unlike PASCAL and ALGOL-based languages (in which complex state- 

ments are built in terns of decision statements and BEGIN...END clauses), 

IFTRAN control constructs are composed of readily identifiable and 

1 
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Figure 3.1.  Example Showing Use of IFTRAN Language Extensions 

matching control statements.  IFTRAN constructs are defined by pairs of 

beginning and ending IFTRAN control statements. The following pairs 

are legal: 

IF...END IF 

WHILE...END WHILE 

DO...END DO 

REPEAT...UNTIL 

LOOP...END LOOP 

FOR...END FOR 

BLOCK...END BLOCK 

Beginning IFTRAN control statements (IF, WHILE, DO, REPEAT, LOOP, FOR, 

BLOCK) cause right indentation one level for succeding statements. 

Ending IFTRAN control statements (END IF, END WHILE, END DO, UNTIL, END 

LOOP, END FOR, END BLOCK) immediately cause left indentation one level. 

o 
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IFTRAN control statements which must match are connected with vertical 

dots on the indented IFTRAN source listing: 

CORRECTLY NESTED CONSTRUCTS 

IF ( ) 

WHILE ( ) 

. DO ( ) 

. . statement(s) 

. END DO 

END WHILE 

END IF 

This enhances the visibility of program structure, as well as providing 

a visual debugging aid.  Indentation level must be zero whr.n an END 

statement is encountered. 

An IFTRAN control statement is either an IFTRAN keyword or an 

IFTRAN keyword followed by a character string contained within balancing 

parentheses. Proper combinations of IFTRAN control statements form 

IFTRAN control constructs. 

The simplest IFTRAN control statement has the form 

IFTRAN-KEYWORD 

where IFTRAN-KEYWORD may be ELSE, END IF, END WHILE, REPEAT, END DO, 

END FOR, LOOP, EXIT, END LOOP, END BLOCK, or END.  Blanks within IFTRAN . 

keywords are not significant. Each keyword must be a separate statement. 

The second form of an IFTRAN control statement Is 

IFTRAN-KEYWORD (CHARACTER-STRING) 

where IFTRAN-KEYWORD may be IF, ORIF, EXIT IF, WHILE, UNTIL, DO, FOR, 

INVOKE, or BLOCK. Keyword conventions are the same as for the simpler 

IFTRAN control statement form. For a statement of this form to be an 

IFTRAN statement, the left parenthesis following the keyword must be 
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balanced by the last non-blank character of the statement (which must be 

a right parenthesis).  Parentheses within Hollerith strings are not 

counted. 

The form of CHARACTER-STRING is not examined by the IFTRAN pre- 

processor (except for balancing parenthesis and restrictions in the DO 

and FOR statements).  To be translated into compilable FORTRAN, CHARACTER- 

STRING should be a FORTRAN logical expression for keywords IF, ORIF, WHILE, 

UNITL, and EXIT IF.  If the embedded language is not FORTRAN, this is not 

necessary. For example, the embedded language can be English for 

purposes of program design documentation. 

IFTRAN STATEMENTS 

IF(COMPUTATION IS COMPLETE) 

WHILE(FLIGHT 76 IS IN DULLES) 

IF...ORI^...ELSE...END IF 

The IF...ORIF.. .ELSE...END IF construct provides the at.'.lity to 

select at most one (but possibly none) among several alternate groups of 

statements to execute.  The basic form of this construct is the matching 

IF...END IF pair.  If the FORTRAN EXPRESSION is true, control proceeds 

to the first statement within the construct; otherwise control transfers 

to the END IF statement. 

Use of the ORIF and ELSE are optional. There may be. more than one 

ORIF condition stated; they will be tested consecutively and, if one of 

the conditions is true, control will be transfered to the first statement 

after that ORIF. Otherwise, control proceeds to an ELSE, if one is 

present, or the END IF. Figure 3.3a shows the Statement Syntax and 3.3b 

is a Construct Flowchart. 

3 
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Figure  3.3a.     Statement  Syntax 

EXP2 

STATEMENTS TO 
EXECUTE IF EXP1 
THRU EXPN ARE 
FALSE 

END IF        -• » C    END IF      J 

STATEMENTS TO 
EXECUTE IF EXPI 
IS FALSE AND 
EXPZ IS TRUE 

STATEMENTS TÜ 
EXECUTE  IF EXPI 
IS TRUE 

Figure 3.3b.    Construct Flowchart 

Figure 3.3.  IF...ORIF...ELSE...END IF Construct 

! 
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WHILE...END WHILE 

The WHILE...END WHILE construct  indicates a repetitive operation 

which is to he performed zero or more times.    It is essentially a 

single-exit  loop which exits  at  the  top of the loop.     Figure  3.4 

illustrates the form and meaning of this construct.     It  Is important 

to note that no initialization or incrementing operations are caused 

by the WHILE...END WHILE construct.     Initialization must be explicitly 

performed before entering the loop, and the iteration variables must be 

explicitly modified on each pass  through the loop. 

DO...END DO 

The DO...END DO construct indiciates a repetitive operation that 

is to be performed one or more times.  It is a single-exit loop with 

the exit at the bottom.  Figure 3.5 illustrates this construct.  It has 

the same meaning as the FORTRAN DO-LOOP; however, no label is necessary, 

and (CHARACTER-STRING) must be of the form (INDEX= INITIAL,FINAL, INCR) 

where each of these variables is a simple integer variable or constant 

(except for INDEX, which must be variable). If INCR is not present, it 

is assumed to be 1. The value of INDEX is not defined after DO...END DO 

termination. The implied initialization and incrementing operations are 

indicated in Fig. 3.5b. 

REPEAT...UNTIL 

The REPEAT.. .UNTIL construct  is like a DO...END DO in that it  is 

performed at least once and has a single exit at the bottom of  the loop, 

and like a WHILE...END WHILE in that no initialization or incrementing 

operations are caused by   this  construct.     Initialization must be performed 

before entering the loop,   and iteration variables must be modified on each 

pass  through the  loop.     Figure  3.6  illustrates  this construct. 
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iNlTlALlZATICN   STATEKEMS 

hhlLt.   I   CCNUITION   » 

fcüüY   CF   lNhlLL,.,ENÜ   i*HlLE 

a)   Statement  Syntax 

{) 

.NOT. CONDITION .   WHILE 

(CONDITION) 

BODY OF WHILE.. 
END WHILE 

f END WHILE    j 

I 

'. # 

b)  Construct Flowchart 

FunCTIÜtv  S^hl(   A   ) 
X   =   /i 
hHlLL(   AbS(X-A/X)    .GT.   l.t-6   ) 
, x   =   (X+A/X)/2 
LUD   l-.HiLE 
SQRT   s   X 
RETtRN 
LNO 

c)  FORTRAN Example 

Figure 3.4.     WHILE...END WHILE Construct 
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a) Statement Syntax 

DO (INDEX-INITIAL, 
FINAL,  INCR) 

to 

INDEX '   INITIAL 

STATEMENTS TO 
PERFORM DO-LOOP 
CALCULATION 

♦ 
INDEX ♦ INDEX + INCR 

/CM^ )EX  .LE.  FINAL ) 

,INüEX  .GT.  FINAL 

b)  Construct Flowchart 
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LOOP...EXIT...EXIT IF...END LOOP 

The basic LOOP...END LOOP construct Is a loop structure with no 

exit (an infinite loop) and no implied initialization or iteration con- 

ditions.  At least one EXIT or EXIT IF statement should be used in each 

LOOP, END LOOP construct. An EXIT or EXIT IF statement is associated 

with the first END LOOP statement following it.  As shown in Figs. 3.7 

and 3.8, EXIT and EXIT IF statements cause control to transfer to the 

first statement after the END LOOP, and are indented to the level of 

the corresponding LOOP...END LOOP pair. This construct is most useful 

for loops which naturally exit in the middle or may have more than one 

reason for exiting. 

1 

FOR...END FOR 

The FOR...END FOR construct allows a variety of loops to be built 

from an initialization clause, modification clauses, and condition clauses. 

The initialization clause is required to provide an initial value for the 

FOR index variable. The Index variable will have the last value assigned 

to it when the FOR...END FOR construct terminates. Optional modification 

clauses provide for changing the FOR index variable other than incrementing 

by one (which is the default value). Escape tests at the top or bottom 

of the FOR loop are constructed with optional condition clauses. 

) 

A FOR...END FOR construct with only an initialization clause has 

the form: 

FOR (INDEX - INITIAL) 

.  BODY OF FOR...END FOR 

END FOR 
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INDEX is any variable which is legal on the left-hand side of a FORTRAN 

assignment statement. The FORTRAN expression "INITIAL" defines the 

value which is assigned to the index variable when the FOR...END FOR 

construct is entered.  The index variable is incremented by one after 

the body of the FOR...END FOR is executed.  This form will cause an 

infinite loop.  It is shown separately to allow a clearer explanation of 

the initialization clause alone. 

f m 

One of the following modification clauses can be used to alter the 

default incrementing of the index variable.  The "BY" clause allows 

positive or negative increments to be specified. A FOR...END FOR con- 

struct with a "BY" clause has the form: 

FOR (INDEX ■ INITIAL BY INCR) 

.  BODY OF FOR...END FOR 

END FOR 

A legal FORTRAN arithmetic expression to be used for incrementing is 

specified with "INCR".  This form will also not terminate. The "NEXT" 

clause can be used to specify new values of the index variable, A 

FOR...END FOR construct with a "NEXT" clause has the form: 

FOR (INDEX ■ INITIAL NEXT EXPR) 

BODY OF FOR...END FOR 

END FOR 

"EXPR" is a valid FORTRAN arithmetic expression whicn is used to compute 

the next value of the index variable. This form will not terminate. 

O 



Several of the following condition clauses can be used to specify 

FOR loop termination conditions. The "TO" clause is useful to specify 

a bound on the index variable. This construct has the form: 

FOR (INDEX - INITIAL TO FINAL) 

.  BODY OF FOR. ..END FOR 

END FOR 

A "TO" clause and a "BY" clause may be used in the same FOR loop. The 

"TO" clause alone will cause the index variable to be incremented by 

one each time through the loop. When the BY clause Is used the incre- 

ment is specified in the clause. A "NEXT" clause cannot be used with a 

"TO" clause.  If the "INCR" specified in the "BY" clause is negative, 

the appropriate termination test is performed. 

The "WHILE" clause allows an escape condition to be inserted at 

the top of the FOR loop.  This construct has the form: 

FOR (INDEX - INITIAL WHILE COND) 

.  BODY OF FOR. ..END FOR 

END FOR 

"COND" is a legal FORTRAN logical expression. The index variable wixl 

be incremented by one after starting at the INITIAL value. The escape 

test is at the top of the loop. 

The "UNTIL" clause allows an escape condition to be inserted at 

the bottom of the FOR loop. This construct has the form: 

FOR (INDEX - INITIAL UNTIL COND) 

.  BODY OF FOR. ..END FOR 

. 

END FOR 
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As in the "WHILE" clause, COND is a legal FORTRAN logical expression. 

A "WHILE" or "UNTIL" clause can be used with any of the other FOR 

clauses. 

The FOR construct and related clauses can be used to state a wide 

variety of loops.  Restrictions in using the FOR...END construct are: 

1. An initialization clause must be used, and it must be the 

the first clause. 

2. The "NEXT" clause cannot be used with either "TO" or "BY" 

clauses. 

3. Each clause keyword (BY, NEXT, TO, WHILE, UNTIL) must be 

preceded and followed by a blank. 

One example of the FOR. ..END FOR construct is shown in Fig. 3.9a, 

b, and c. 

BLOCK...END BLOCK and INVOKE 

The BLOCK...END BLOCK construct provides a form of internal sub- 

routine capability in IFTRAN source programs. This construct is an 

internal procedure which has access to all variables in the routine 

which contains it. A BLOCK. ..END BLOCK is executed only if it is 

referred to with an INVOKE statement which specifies its name. The 

name of the BLOCK below is CHARACTER-STRING: 

BLOCK(CHARACTER-STRING). 

All characters in CHARACTER-STRING are significant after the first non- 

blank and before the last non-blank; (this allows names of more than 

six characters so that the name can have mnemonic significance). 

Figure 3.10 illustrates this construct. As the flowchart for this 

construct indicates, it is a single-entry (the BLOCK statement), single- 

exit (the END BLOCK statement) section of code. An INVOKE statement 

causes control to transfer to the named BLOCK statement, and the 
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matching END BLOCK statement causes control to transfer back to the 

statement after the INVOKE. More than one INVOKE for a given BLOCK... 

END BLOCK construct is allowed.  Though BLOCK...END BLOCK constructs 

can be nested, no recursion is allowed in the invoking of BLOCKS 

(i.e., a BLOCK cannot directly or indirectly invoke itself).  Also, 

the name of a BLOCK is known throughout the entire routine in which it 

is contained.  BLOCKS cannot be invoked from an external routine, nor 

can they be passed as a parameter to another routine. 

) 

3.1.2 PASCAL Control Constructs 

The PASCAL language provides a basic framework for programming 

structured software. Such features as nested procedure declarations, 

nested control structures, data typing and data structure hierarchy 

with controlled access by scope are important when writing structured 

code. 

In standard PASCAL, the IF statement, CASE statement, WHILE 

statement, FOR statement, and WITH statement are all assumed to cor tain 

a single statement. In order to allow the inclusion of more than one 

statement in one of these statements, it is necessary to surround the 

statements with the words BEGIN and END. The net result is that strings 

of ENDs can appear in a program'which, on occasion, are difficult to 

pair with their respective BEGINs. One solution has been for a programmer 

to indent the statements that belong together. Another solution is to 

improve the syntax so that automatic indenting Is possible with a single- 

pass preprocessor. This relieves the programmer from counting spaces to 

achieve readability while still providing an indented listing.  It also 

eliminates the need for BEGINs within control structures and assigns 

more meaning to the ENDs.  This is accomplished by using unique keywords 

to terminate each type of statement or to separate parts of the statement. 

1 



I, Km 

o 

Thus, where original PASCAL has 

IF year > - 500 THEN 

BEGIN write ('d'); year := year - 500 END; 

the improved syntax lists a statement entered as: 

IF year > = 500 THEN write ('d'); year := year - 500 END IF; 

with the indented listing: 

IF year > = 500 THEN 

write ('d'); 

year := year - 500 

END IF; 

In a similar manner, where the original PASCAL has: 

WHILE power > 0 DO 

BEGIN {ans*temp**power ■ base**exponent,power > 0) 

WHILE NOT odd (power) DO 

BEGIN power := power DIV 2; temp := sqr(temp) 

END; 

power !!■ power - 1; ans := temp*ans 

END; 

the improved syntax would list a statement entered as: 

WHILE power > 0 DO 

{ans*teipp**power ■ base **exponent, power > 0} 

WHILE NOT odd (power) DO 

power := power DIV 2; temp :■ sqr(temp) 

END WHILE; 

power :« power - 1; ans :■ temp*an8 

END WHILE; 

with the Indented listing: 

o 
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WHILE power > 0 DO 

{ans*temp**power ■ base **exponent,power > 0} 

WHILE NOT odd (power) DO 

power := power DIV 2; 

temp := sqr(temp) 

END WHILE; 

power :» power - 1; 

ans := temp*ans 

END WHILE; 

") 

i 

Where the original PASCAL has a statement of the form: 

FOR i := 0 TO lim DO 

BEGIN x 5- d*i; y := exp(-x)*8in(c*x); 

n 8" round(s*y) + h; 

REPEAT write (' '); n := n - 1 

UNTIL n = 0; 

writeln ('*') 

END; |.- 

The changed syntax provides an indented listing of the form: 

FOR i := 0 TO lim DO 

x := d*i; 

y :» exp(-x)*sin(c*x); 

n := round (8*y) + h; 

REPEAT 

write (' '); 

n := n - 1 

UNTIL n - 0; 

writeln ('*') 

END FOR; 

") 

0 
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( Where the original PASCAL has a statement: 

WITH vaccine [child3] DO 

BEGIN month := april; day := 23; year := 1973 

END; 

the indented PASCAL listing reads: 

WITH vaccine [child3] DO 

month := april; 

day := 23; 

year := 1973 

END WITH; 

The CASE statement in PASCAL permits the selection oi alternative 

actions based on the evaluation of a single expression. Where the 

original PASCAL has: 

CASE i OF 

0: side := 0.; 

1: side := sin(angle); 

2: side := cos(angle); 

3: side :-• exp(angle); 

4: side := In(angle) 

END 

The improved syntax looks like this statement: 

CASE 1 

OF 0: side • 0. 

OF 1: side »■ sin(angle) 

OF 2: side If  cos(angle) 

OF 3: side :» exp(angle) 

OF 4: side := In(angle) 

END CASE; 

(   ) 
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and the indented listing: 

CASE i 

OF 0: side - 0. 

OF 1: side := sin(angle) 

OF 2: side := cos(angle) 

OF 3: side := exp(angle) 

OF 4: side := In(angle) 

END CASE; 

Note that the separator semicolon (;) has been replaced by the keyword 

OF,, 

Other programming languges (e.g., JOVIAL and IFTRAN) offer a 

language construct for alternative statement selection that is more 

powerful than the PASCAL CASE statement, namely the IF...ORIF...ELSE 

construct.  The IF, each ORIF, and a terminating ELSE constitute a 

sequence of alternatives. Each has an associated expression, and the 

first expression in the sequence which evaluates as true determines the 

alternative selected. Where in the original PASCAL a succession of 

nested IF statements is required to state more complex alternatives: 

IF distance > 0. THEN answer := distance + minimuD 

ELSE IF distance ■ 0.  THEN answer := abs (minimum) 

ELSE IF distance < minimum THEN answer := minimum 

ELSE answer :■ sptcial; / 

the improved syntax reads: / 

IF distance > 0. THEN answer :* distance + minimum 

ORIF distance - 0. THEN answer := abs(minimum) 

ORIF distance < minimum THEN answer :^ minimum 

ELSE answer := special 

ENDIF; 

/ 
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i ( with the indented listing: 

IF distance > 0. THEN 

answer := distance + minimum 

ORIF distance - 0.  THEN 

answer := abs(minimum) 

ORIF distance < minimum THEN 

answer := minimum 

ELSE 

answer := special 

ENDIF; 

The advantages of these changes are: 

1. A readable indented listing is provided whether the programmer 

indented the source code or not. 

2. The END statements do not require comments to tag them to 

keywords such as ENDiwith}. 

3. Numerous BEGINs are eliminated. 

A.   The flavor of PASCAL is retained. 

5.   Standard PASCAL can be generated to retain compatibility. 

The syntax for these statements is defined in Fig. 3.11; the syntax 

diagrams are shown in Fig. 3.12.  Figure 3.13 shows the indented listing 

for a PASCAL program which utilizes most of these control structures. 

The Syntax diagrams shown in Figs. 3.12, 3.15, 3.17, and 3.19 depict 
changes to those in Ref. 12. 

() 
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<if statetnent>: :■ 

If <expression> then <8tatement li8t> <alternative> end If 

<alternative>:" (orlf <expression> then <statement li8t>}l - 

{orif <expre38ion> then statement llst>} else <statetnent ll8t> 

<case statement>::■ 

case <expression> of^ <case list element> 

{or <case list eleinent>} end case 

<case list element>:incase label list>:<statement list>! 

<empty> 

<while statement>::" 

while <expression> do <statement list> end while 

<for statement>::■ 

for <control variable>:"<for ll8t> do 

<statement list> end for 

<with statement>::■ 

with <record variable list> do 

<scateinent list> end with 

statement list>::«<8tatement>{;<statement>} 

Denotes change to existing BNF. 

Denotes addition to existing BNF. 

Figure 3.11. PASCAL Statements for Control Structures 
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3.2  EXECUTABLE ASSERTIONS 

The addition of assertions to a language provides the designer 

and programmer with a tool for stating specifications that  can be used 

as a basis for static consistency checking and program > erification as 

well as for execution tests. This capability has been added to FORTRAN 

and PASCAL without disrupting the integrity of the standard languages. 

The existing definition of expressions was retained, and the ability 

to state quantified logical expressions was added. 

Three keywords: INITIAL, ASSERT, and FINAL were added to the 

language to allow the expression of assertions. As the names imply, 

INITIAL is used for an assertion that is initially true on entry to a 

program or procedure; FINAL is used for a final assertion that is true 

on exit from a program jr procedure; and ASSERT is used anywhere else. 

The syntax of the INITIAL/ASSERT/FINAL assertions is: 

FORTRAN PASCAL 

KEYWORD (assertion expression)  KEYWORD assertion expression 

where KEYWORD is INITIAL, ASSERT, or FINAL and la followed by any 

expression that evaluates to true or false.  Examples are 

FORTRAN 

ASSERT (LINEND .GT. ZERO) 

FINAL (VOLUME . EQ. HEIGHT*AREA) 

INITIAL (COLOR .EQ. RED .AND. SIZE .EQ. 10) 

PASCAL 

ASSERT linend > zero; 

FINAL volume ■ height*area; 

INITIAL (color - red) AND (size - 10); 
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One logical operator was added to the expression used in 

assertion statements. This is the implication operator which is 

represented by .IMP. in FORTRAN and by the pair of symbols => in 

PASCAL.  Thus it is possible to state 

FORTRAN PASCAL 

ASSERT (P .IMP. Q) ASSERT p => q; 

ASSERT (A .AND. B .IMP. Q)   ASSERT a AND b => q; 

The implication operator has the lowest precedence of all operators 

which means it is the last operator to be evaluated. 

Quantified expressions are defined in terms of the keywords 

SOME which stands for  3 and ALL which stands for V . A range of 

values is stated for the quantified variable in a similar manner to 

PASCAL FOR statements.  Examples of assertions which contain quantified 

expressions are: 

FORTRAN 

ASSERT (.ALL. I IN (FIRST, LAST) (ARRAY(I) 

.LT. ARRAY (I - 1))) 

INITIAL (.SOME. J IN (1, K) (ARRAY(J) 

.EQ. ANSWER)) 

PASCAL 

ASSERT ALL (i IN 1 TO n IS 

a[i] < a[i + 1]) 

INITIAL SOME (j IN 1 TO k IS 

x[j] ■ answer) 

FINAL ALL (m in 1000 DOWN TO 1 IS 

y[m] >»  x[n]) 

With these changes, the full range ol expressions in the first- 

order logic may be stated. However, there is one more type of 

expression that is useful In assertion statements. This is the 

C ) 
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definition of an assertion that can be used as a function. For 

example, to assert that an array subtotal has been zeroed requires 

the statement 

ASSERT ALL (1 IN 1 TO length IS 

subtotal[I] = 0); 

However, if this type of assertion is common, a function named zeroed 

can be defined so that we can state 

ASSERT zeroed (subtotal); 

vThlch requires fewer symbols and is more mnemonic. The declaration 

of this function is a Boolean type PASCAL function whose body contains 

only assertion statements. 

PROCEDURE zeroed (a: ARRAY [1..length] OF integer): boolean; 

VAR i: integer; 

BEGIN 

ASSERT ALL (i IN 1 TO length IS 

a[i] - 0) 

END; {zeroed} 

Upon exit from the procedure, the value of the function is set to the 

conjunction of all assertions. 

The Corresponding assertion form which would be recognized by the 

IFTRAN preprocessor is 

ASSERT (ZEROED (SBTOTL,LENGTH)) 

The code for the function would be 

LOGICAL FUNCTION ZEROED (SBTOTL,LENGTH) 

CMODN ZEROED 

LOGICAL ASSERT 

ASSERT (.ALL. I IN (1, LENGTH) (A(I) .EQ. 0)) 

ZEROED ■= ASSERT 

RETURN 

END 1 
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The assertion statement may include a FAIL clause. The FAIL con- 

struct is a vehicle for defining an exception action which is executed 

whenever the assertion expression evaluates to false.  In an IFTRAN 

program, this is accomplished with a FAIL statement which invokes an 

error-processing routine specified by the user and contained within a 

BLOCK...END BLOCK construct.  Following execution of the BLOCK procedure, 

control is transferred back to the statement following the FAIL. The 

syntax of the FAIL construct is 

KEYWORD (assertion expression) 

FAIL (name of BLOCK) 

• 

BLOCK (name of BLOCK) 

END BLOCK 

where KEYWORD is INITIAL, ASSERT, or FINAL. An example is 

INITIAL ( INDEX .GT. 0 ) 

FAIL ( PRINT ERROR CAUSE ) 

• 

BLOCK ( PRINT ERROR CAUSE ) 

WRITE ( L0UT,1) 

1 FORMAT ( 41H0INPUT PARAMETER HAD NO MEANINGFUL VALUE ) 

END BLOCK 

In PASCAL, a sequence of statements for the exception action starts 

with the keyword FAIL and terminates with an END FAIL. The exception 

action can be used to recover from erroneous data as in the example: 

ASSERT ALL (i IN 1 TO 20 IS z > a[il) 

FAIL recover(z) END FAIL; 

O 
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3.2.1 FORTRAN 

INITIAL, FINAL, and ASSERT Statements are normally changed to 

FORTRAN comments by the IFTRAN preprocessor, but may optionally be 

changed to execute FORTRAN statements which provide exception reports 

whenever the assertion is not true during execution. The translation 

templates are presented in Appendix C. 

Assertions for ASSERT may be placed anywhere a statement may be 

used. The INITIAL and FINAL assertions are placed, respectively, 

immediately before and after the executable code.  It is also possible 

to include any or all of these assertions within a BLOCK..END BLOCK 

construct; the same rules for placement apply. 

3.2.2 PASCAL 

The PASCAL assertion for INITIAL is placed immediately after the 

BEGIN which starts the program or procedure statements (or after a 

label referenced by non-local GOTO statement ), and the assertion for 

FINAL is placed immediately before the END which terminates the state- 

ment part of a program or procedure (or before a GOTO which transfers 
** 

control to a non-local label ). Assertions for ASSERT may be placed 

anywhere a statement may be used. The syntax for executable assertions 

is shown in Fig. 3.14 and the syntax diagrams are in Fig. 3.15. The 

translation templates are in Appendix B. 

3.3  DATA ACCESS STATEMENTS 

In standard PASCAL and FORTRAN, a program module has access not 

only to locally declared variables but also to variables which are 

declared outside the scope of the module. Access to global variables 

occurs in one of two ways: by explicit declaration (I.e., those appearing 

as formal parameters or, in FORTRAN, as common variables) and, in 

** 

This construct violates the single entry restriction for a module. 

This construct violates the single exit restriction for a module. 
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*    <un]abel]Ld Rtatement>::= 

<slmp]c statcnient> | <structured statement"-" | 

<assertlon> 

+    <assertion>::= <inltlal assertion>|<assertlon statement^|<final assertlon> 

+    <inltial asscrtion>::= 

Initial «"assertion cxpre!3slon> | 

initial <assertlon expresslon> fall <statcment list> end fall 

+ 

+ 

<flnal assertlon>::= 

final -^assertion oxpression> 

final <assertlon expressioii> fail <statepient list> end fall 

<assertlon statoment>: : = 

assort «"assertion expression> ; | 

assert 'assertion expression> fail <statetnent llst> end fail 

<assertion expression>: : = 

<quantifica expresslon>|<quantlfled expresslon> 

»> 'quantified expression> 

<quantified expression>::= 

all <quantlfier tail>| some <quantifier tail>| 

<exprcssion> 

'quantifier tall>::» 

(«control varlable> In 'quantifier list> ^s 

'assertion exprcsslon>) 

<quantifier llst>::= 

<inltlal value> to 'final value>| 

«initial value> down to 'final value> 

<initial va)ue>::= 'exprosslon> 

'final valuta::" <expression> 

a 

nonotes  change  to existing  BNF 

Denotes  addition   to existing  BNF 

Figure 3.14.     PASCAL Statements for Assertions 
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Standard PASCAL, by implicit scope rules (i.e., all variables declared 

in the set of other modules which contain the particular module). 

INPUT and OUTPUT assertions specify the data access righte to 

global variables and are used in static consistency checking as well as 

dynamic testing. The INPUT statement lists those variables which are 

input (i.e., set prior to entry) to the module. The OUTPUT statement 

lists those -'/ariables which are output (e.g., assigned or r^.ad from 

auxiliary storage) by the module.  This restricts the global variables 

which may be ';8ed or set by the particular module. 

3.3.1 FORTRAN 

INPUT and OUTPUT statements are normally changed to FORTRAN comments 

by the IFTRAN preprocessor, but may optionally be changed to executable 

FORTRAN statements which cause the values of program variables to be 

printed.  If the source language embedded in the IFTRAN program is 

FORTRAN, and dynamic tracing of input or output variables will be performed, 

a specific syntax for INPUT and OUTPUT statements is required.  In order 

to print with a correct format, the INPUT and OUTPUT statements must 

provide type specifications. Any variables whose type is not specified 

will not be printed. The syntax to provide type information is 

INPUT (VAR1ABLE-LIST1) 

or 

OUTPUT  (VARIABLE-LIST2) 

where each VARIABLE-LIST  is  /TYPE/VARIABLE1,/TYPE/VAR1ABLE2, and 

TYPE is one of REAL,  INTEGER,  HOLLERITH,  LOGICAL,  or none.     Each 

VARIABLE may be a non-subscripted variable name, arrav name,   individual 

element of an array, or array subrange.    A(I=1, N)  specifies a subrange 

where    A    is an array of    N    words or more.     I    is a variable whose 

value will be undefined after the INPUT or OUTPUT statement is executed. 

) 
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o 

Type specifications preceding eaci 'ARIABLE are optional.  A type 

specification remains in effect until it is changed.  Only variables 

with REAL, INTEGER, HOLLERITH, or LOGICAL type specifications will be 

printed.  The VARIABLE-LIST 

INDEX,/REAL/RANGE,DIST,/INTEGER/L(I - M,N) 

will not print a value for INDEX, but will print the values for RANGE 

and DIST with an E or F format and the Mth to Nth values of 

array L with an integer format.  The variables of VARIABLE-LIST1 and 

VARIABLE-LIST2 need not be distinct; that is, a variable may be used as 

both input and output.  Figure 3.1 provides a specific example of INPUT 

and OUTPUT statements. 

The INPUT statement should immediately precede the first executable 

statement of a program or block.  The OUTPUT statement should precede the 

RETURN or STOP statement at the end of the program or an imbedded RETURN 

or STOP which is before the end of the program.  If used within a BLOCK, 

it is placed after all executable code but before the END BLOCK. 

3.3.2 PASCAL 

The INPUT statement is positioned after tL* first BEGIN in the 

body of the module. Labels referenced by non-local GOTO statements 

should be followed by an INPUT statement. The OUTPUT statement is 

positioned prior to the last END in the module body.  GOTO statements 

which reference non-local statement labels should be immediately preceded 

by an OUTPUT statement.  The syntax of INPUT and OUTPUT statements is 

shown in Fig. 3.16 and the syntax diagrams in Fig. 3.17 

l 

3.A  PHYSICAL UNITS STATEMENTS 

The extensions to FORTRAN and PASCAL include a specification 

capability for the physical units with each constant or variable. This 

permits automated units consistency checking in expressions during 

static analysis. A UNITS statement performs no executable function in 
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<lnput statement>: := Input <variabl{' identifi3r>{ ,<variable identifier:»} 

<output statement>t:= output <variable identifier>{,<vari£.ble identifier>} 

Figure 3.16. Data Access Statements for PASCAL 

—•/      INPUT       J     f * variable identifier 

o 
•   m 

I 

Figure 3.17. Syntax Diagrams for PASCAL Data Access Statements 

>' .' i   :   r   ' >. - , ^     ■  '. 

1 
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,■ { 
a dynamic test and is changed to a comment. Physical units are 

expressed as a quotient of products (e.g., FT/SEC, LB*SEC**2, 1/GRAM) 

for actual units, or the symbol 1 for unitless, or the symbol 0 for 

arbitrary units. 

o 

3.4.1 FORTRAN 

The syntax for the UNITS statement is 

UNITS(VARIABLE-LIST1 = UNITS-EXPRESSIONl, 

VAR1ABLE-LIST2 • UNITS-EXPRESSI0N2,...) 

where each VARIABLE-LIST is VARIABLEI = VARIABLE2 = ... and each UNITS- 

EXPRESSION is an arithmetic expression involving the physical units of 

the program variables. All UNITS statements should be included in the 

declaration section before any executable .statements. The second 

statement in Fig. 3.1 provides an example of a UNITS statement. 

3.4.2 PASCAL 

Standard PASCAL has provision for assigning types to constants and 

variables. In addition hierarchies of dat^ structures may be constructed 

through type declarations. These represtmt the computer implementation 

of the program data as opposed to a physicai interpretation (e.g., physical 

units) of the data. Some PASCAL compilers strongly enforce data types 

and data usage (i.e., only permitted operations are allowed on a specific 

data type and so-called "mixed mode" expressions are handled with type 

conversion rules or are considered to be errors). For PASCAL, the syntax 

of units declarations is a qualifier to the simple type or to the con- 

stant definition. The syntax for the UNITS qualifier is shown in 

Fig. 3.18, and the syntax diagram is in Fig. 3.19. Figures 3.20 and 3.21 

show examples of usage. 

( ) 
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j 

* 

+ 

<con8tant definitions:= 

;ldentlfler> ■ <constant>| 

<ldentlflar> = <con8tant> units <unlt8> 

<slinple types:*5 <baslc type>|<baslc type> units <unlt8> 

<ba8lc type>::!" <scalar type> | <8ubrange type>|<type ldentlfler> 

<unlt8>:: 

<unlts factor>|<unlt8>/<unit8 factor^ 

<unlts>*<unlt8 factor> 

<unlt8 factor>::* 

<identlfler>I(<units>)I<unlt8>**<con8tant; 

Figure 3.18.    UNITS Qualification for PASCAL 
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c 

—J      CONST 
w 

Identifier >r: construct |-— 
-~ , 

^^  _ _  Oc 

(       UNITS  V*-  units  U-<   :; 

O 
replacement for CONST line in BLOCK diagram 

~» 

0 

type ♦HK  UNITS units 

replacement for type box 1n all diagrams 

UNITS 

units/factor 

UNITS FACTOR 

1 

U(7>J units - V      / 

units -e- 1 
construct 

simple type UNITS > units 

replacement for simple type In all diagrams 

Figure 3.19.     Syntax Diagram for PASCAL UNITs Statements 

O 
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proRrnm convert(output); 

{gencrntps a table to convert between degrees centigrade 

and degrees fahrenheit} 

const 

addln ■ 32 units degfahrenhelt; 

mulby = 1.8 uniis degfahrenhelt/degcentlgrade; 

low  " 0 units degcentigrade; 

high " 39 units degcentlgrade; 

separator = ' : '; 

begin 

degree:low..high; 

wr1tcIn(separator); 

for degree := low t£ liiph dn 

write(degree,V,round(degree^mulby+addin),'f'); 

If odd (degree) Chen 

wrlteln 

endlf 

end for- 

wrlteln; 

wrltcln(separator) 

end. 

Figure 3.20.     Example of Constant Definition Part with Units Defined 

type alpha « packed array  [1:10]  of_ char; 

payroll ■ record 

naino:   record  first,   last: alpha 

end record; 

SS  :   Integer; 

time worked:   real  units hours; 

rate:  real units dollars/hour; 

pay:   real units  dollars; 

end  record; 

Figure 3.21.     Example of Type Definition Part with Units Defined 
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3.5  IMPLEMENTATION OF VERIFIABLE PASCAL 

The ability to verify and execute Verifiable PASCAL programs is 

possible by the addition of a PASCAL front end to the verification condi- 

tion generator and by a Verifiable PASCAL preprocessor which translates 

the control structures and assertions into Standard PASCAL.  Since PASCAL 

has been selected as the base language for future Advanced Quality Assur- 

ance research projects, extensions and improvements to the language 

other than those described in Sees. 3.1-3.A are expected (e.g., constructs 

for fault tolerant software and for concurrency).  This means that the 

Verifiable PASCAL should be easily adapted for language changes. 

o 

Several approaches to developing the PASCAL processor were con- 

sidered: 

1. Modify existing language tools (e.g., the PDL-1 

translator or the IFTRAN translator) to analyze PASCAL 

2. Design and develop a new processor based on the properties 

of PASCAL 

14     15 
3. Use a compiler writing system such as CWIC  or CWS  to 

generate the PASCAL processor 

o 

The existing language analyzer tools are, for the most part, based 

on FORTRAN languages and extensions such as IFTRAN.  The PASCAL language 

with its extensions is richer than FORTRAN in the very features most 

important to Advanced Quality Assurance research (i.e., data structure 

and control structure), thereby adding complexity to the requirement for 

the language analyzer. The existing front end tools for the verification 

condition generator are separate and distinct from the translator 

preprocessor.  Because of the complexities of PASCAL, and the requirement 

for analyzing future language expressions, a single language analyzer to 

serve both functions (i.e., as front end to the verification condition 

generator and as a preprocessor for the PASCAL compiler) was desirable. 

This approach has the advantage of maintaining compatibility in source 

recognition between the two functions, an improvement over existing tools. 
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14      15 Previous experience in using CWIC  and CWS " for other 

applications  demonstrated the effectiveness, flexibility, and efficiency 

of using a compiler writing system to implement language analysis tools 

over conventional implementation techniques. CWIC offers an extensive 

library of semantic actions to support syntactic analysis, but presents 

serious integration problems with other Software Quality Laboratory 

tools. CWS, on the other hand, is itself written in PASCAL, is moderate 

in size, and generates a language analyzer written in PASCAL.  The 

resulting program is easier to interface with other tools. Using CWS 

also offered an opportunity to gain experience with operational PASCAL 

programs. 

CWS is available in two versions: the original bottom-up system 
18 19 

used by TRW in RSL development  and the later top-down system.   CRC 

had previously obtained both systems, conducted informal experiments 

using the grammar of PASCAL, and found the top-down system to be more 

applicable and less restrictive for analyzing large grammars. 

17 

The top-down version of CWS consists of a sequence of three programs. 

The first program, ANALGEN,  accepts as Input a syntax definition of the 

language grammar with Imbedded semantic actions, analyzes the grammar for 

completeness and conformance to the properties of LL(1) grammars, prepares 

tables for the later phase of the system, and generates the procedures 

which perform the syntactic analysis and semantic analysis of source text. 

The second program,  SCANGEN, using the tables produced by ANALGEN, 

together with a file of prototype code, constructs the lexical analyzer 

with its required tables for reserved words and operators;  it also 

incorporates user-specified options for such details as treatment of 

blanks,  length,  and maximum number of identifiers and other token-related 

definitions.    The third program, ANDEGEN, completes the language analyzer 

in preparation for compilation.     It merges code generated by both preceding 

phases together with user-supplied supplementary declarations supporting 

semantic actions to produce the language analyzer program. 

1 
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Within the CWS framework a Verifiable PASCAL analyzer has been 

designed and partially implemented.  This analyzer serves both as a 

front end to the VCG and other tools (incomplete) and as a translator to 

standard PASCAL (completed).  This effort involves the following activities: 

1. Develop a description of the grammar for Verifiable PASCAL 

(see Appendix A). 

2. Design standard PASCAL templaces for translation of 

language extensions (see Appendix B). 

3. Design and implement semantic actions for language transla- 

tion 

4. Design the interface to the VCG and other tools 

5. Design and implement semantic actions for interface 

Items 1 through 3 are completed and work has commenced on the remaining 

two. 

( The Verifiable PASCAL analyzer reads programs written in Verifiable 

PASCAL and generates (1) a listing of the input text with imbedded 

syntactic error messages, (2) a file of the translated program for input 

to the PASCAL compiler, (3) a detailed description of the source text 

suitable for input to the VCG and other tools, and (4) a series of reports 

including an inuented listing of source text and a directory showing 

text groups (e.g., CONST, TYPE, VAR, statements) and module block 

structure. Examples of (1), (2), and (4) are shown in Figs. 3.22 through 

3.25. 

o 

The indented listing (Fig.   3.24) contains a sequential statement 

number for the entire text,  the key for each text group  (H for heading, 

C for CONST, T for TYPE, V for VAR,  and S for statement),  the nesting 

level for executable statements,  the Indented text,  and the module block 

structure with sequential statement number within the module.    Assertion 

warnings in the executed program list the appropriate statement numbers 
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I   PROGFAH   FOSTFIXdNPUT,OUTPUT) ? 
2 VAR rmoiw; 
3 PROCcruRf FIND: 
W BEGIN 
5 RFPFAT RFAO(CH) 
6 UNTIUCH<>=   H)ftN0   r3T   FOLMIINPUT) 
7 END; 
8 PROCFDURF EXPRESSION? 
9 VAR CPICHA«; 

10 PROCFCURF TERM; 

n PRCCEru-n FACTOR; 
12 BEGIN 
13 IF   CH=r<£   THEN 
it* FIND; 
15 EXPRESSION; 
16 ELSE 
17 WRITEfCH» ; 
18 ENDIF; 
19 FINO 
?o END; 
21 (»FACTCRM 
22 BEGIN FACTOR*, 
23 WHILE CH=i»= 00 
Zk   FIND? 
25 FACTOF; 
26 WRITE(=»E) 
27 ENOWHILF 
28 END; 
29 (»TERK»» 
30 UEGlf. 
31 TERM; 
32 MHILf <CH= = 4-=IOR(CH==-=» 00 
33 OPI=CH; 
3*» FINO; '• 
35 TERM; 
36 HRITE(CP)5 
37 FMO WHILE 

38 END; 
39 (•EXPFfS5IONM 
«.0 BEGIN 
(»i FIND; 
M REPEAT 
(♦3 WRITf (= Ei; 
kk EXPRESSION; 
•♦5  WPITEU; 
«16   UNTIL   CH = = .= 
i»7   FNO. 

) 

Figure 3.22.     Example of  Input Text Listing from Verifiable PASCAL 
Preprocessor 

~\ 
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0 

0QC906 PROCP*M POSTFIX 1 INI 
OQC^SH V&R 
'iQ'.'tö^ CH 5 CHAR ; 
C31.-65 tSSff-f   '/.   BOOLEAN ? 

oaot»6i HROCf-OUPE FIND ; 
0 3 0 0 Q 3 VAR 
aaooQ} tSSFRT •/. BOOLEAN ; 
DOOOOd BEGIN 
oooocu REPEAT 
oaaaoö RFGIN 
QUOOs READ ( CH ) 
ooc:i3 END 
0 0 3013 UNTIL ( CH <> = = » 
020015 END ? 
0DQ025 PROCECURK EXPRESSION 
000005 VAR 
0 0 0 0 G 3 OP I CHAi* ; 
O0C0O<« ASSEPT X BnOLEAN ; 
OQC305 PRCCECUPE TERM ? 
0 'J c a Ü 3 WAR 
0DCJ03 ASSEFT '/. BOOLEAN ? 
cjaoa"» PROCFrilRE FACTOR ; 
000003 VAR 
flOGOOJ ASSEPT V. BOOLEAN ; 
cacoo"» BEGIf 
OOOOQi* IF CH = =1=   THEN 
010010 BEGlr 
C0C010 FIKO ; 
OOCOll tXFRESSlON ? 
0 0 0 0 12 ENO 
000012 ELSE 
000013 BEGIN  - 
000013 WHITE ( CH ) ? 
ooooir END (»ENOIF •) ; 
000317 FIMC 
000017 ENO ; 
00 0 0 20 BEGIN 
000026 FACTOR ; 
000307 WHILE CH = =•= 00 
OOOOU BEGIN 
000011 FIND ? 
000012 FACUP ; 
C0001'» WRITt J i»= » 
CQCC16 END (»ENOHHILE •) 
000015 END ; 
030025 BEGIN 
000023 TERM ? 
OOC0O7 WHILE t CH = =♦= ) C 
OOOOU BEGIN 
OOOül* OP i= CH ; 
000317 FIMC % 
OOC020 TER* ? 
030022 WRITE ( OP ) ; 
000026 ENO (•ENO WHILE •) 
C0C02Ö END ; 
303037 fiEGIK 
003337 FIND : 
033023 REPEAT 
000023 BEGIN 
000023 WRITE I = = » J 
001,025 EXPRESSION ! 
000020 WRITELN 
0.100?o FNO 
000027 UNTIL CH « =,= 
000027 ENO . 

OUTPUT I 

AND NOT EOLN < INPUT > 

OR ( CH •1 ) 00 

Figure 3.23. Example of Translated Text Produced by Verifiable 

PASCAL Preprocessor 
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MODULE   TEXT   GROUPS   ANH   ULICK   STRUCTURE 

HEAD LABEL COKST TYPt VAR BEGIN 
I 0 Ü 0 2 <♦! 

■♦ 0 0 Ü 0 5 
10 0 i] 0 11 32 
13 0 0 0 u ?U 
!«♦ 0 n 0 0 15 

»♦J POSTFIX 
9 .   eIMD 

«♦0 .   EXPRESSION 
31 .   .   TERM 
?3 .   .    .   FACTOP 

Figure  3.25.     Example of  Source Text Directory and Module  Structure 
Report 

( 
and module names shown on the indented listing. The directory report 

(Fig. 3.25) shows the text-wide statement number which begins each text 

group for each module and the module block structure depicting the scope 

of the module. 

The user may select from various options by preceding the text with 

an OPTIONS statement. The keyword ASIS is a mnemonic for "as is." The 

implemented translation options include: 

CONTROL - ON (default), translate Verifiable PASCAL control 

statements (IF...ORIF...ENDIF, etc.) to standard PASCAL 

CONTROL ■ ASIS, pass control statements without translation 

ASSERT - ON (default), translate assertion statements to executable 

code 

ASSERT ■ OFF, translate assertion statements to comments 

ASSERT - ASIS, pass assertion statements without translation 
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UNITS = OFF (uefault), translate units qualifiers to comments 

UNITS - ASIS, pass units qualifiers without translation 

RIGHTS = OFF (default), translate data access rights statements 

(INPUT, OUTPUT) to comments 

RIGHTS ■ ASIS, pass rights statements without translation 

For translation to executable text the user normally selects the default 

options.  For interface to other tools the user selects the option appro- 

priate for the target tool.  Since the analyzer design is not yet complete 

for the interface, user options for the interface have not been specified. 

~) 

72 



4 STATIC ANALYSIS 

Once the syntax analysis of a program Is without errors, the second 

step In developing verifiable software is static analysis, as shown in 

Fig. 2.1.  The Software Quality Laboratory provides a set of consistency 

checking techniques that detect a wide variety of errors and are appli- 

cable to large software syptems.  They also detect the incorrect use of 

variables when assertion statements are add^d to a program.  Data access 

statements and unit qualifiers provide formalized representations of soft- 

ware specifications and programming assumptions at the source languag 

level of detail.  Source language conventions and good programming prac- 

tices also provide general software specifications.  Inconsistencies be- 

tween the software and its specifications are automatically detected and 

reported by the static analysis tools in the Software Quality Laboratory. 

0 

The types of inconsistencies which are detected include: 

• Operations on variables with mismatched physical units 

• Variables used prior to being assigned a value or set 

and not used 

• Actual use of a variable which differs from asserted use 

• Mismatched data types 

• Unreachable statements 

• Infinite loop constructs 

• Inconsistent actual and formal parameters 

O 

The Laboratory provides a command language to control the static 

analysis tools.  Commands may be entered as data input cards during 
20 

batch processing, or interactively through the Anagraph console.   Use 

of the Software Qualify Laboratory commands is described in Sec. 4.1. A 

static analysis tool which performs units checking by validating arith- 

metic expressions for consistent physical units is included.  The physical 

units consistency analysis algorithm which is implemented in the Laboratory 

is discussed in Sec. 4.2.  Another tool which performs set and use checking 
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by uncovering possible use before set conditions and similar variable use 

abnormalities is also included. Section 4.3 describes the algorithm usec 

to perform variable use/set analysis (data flow analysis). The Software 

Quality Laboratory provides a common data base which Integrates the use- 

fulness of static analysis tool"..  Set/use analysis automatically gener- 

ates the actual use of program variables. This allows data access asser- 

tions to be compared with actual variable usage. The multiple module 

data base and program structure Information required for set/use analysis 

allow formal and actual parameter checking as well as structural consis- 

tency analysis. 

J 

4.1  STATIC ANALYSIS COMMANDS AND REPORTS 

The static analysis techniques available in the Software Quality 

Laboratory include: 

• Units checking which validates expressions for consistent 

physical units. 

• Set and use checking which uncovers possible use before 

set conditions and similar program abnormalities. 

• Assertion use versus actual use which checks INPUT and OUTPUT 

statements against actual usage of these variables within the 

module and validates that unmentloned global variables are 

not referenced. 

• Type and mode checking which identifies possible misuse of 

constants and variables in expressions, assignments and 

invocations. 

• Graph checking which identifies possible errors in program 

control structure such as unreachable code. 

• Invocation checking which validates actual invocations 

against formal declarations; checking for consistency in 

number of parameters and type and intermodule input/output 

consistency. 

) 
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f The Software Quality Lab analysis tools are controlled using a 

command language.  Static analysis is executed with the command 

STATIC 

Seven options may be selected.  Five are selected "ON" by default, and 

two "OFF". To change any of the default settings, it is necessary to 

insert the appropriate command from the following list before the com- 

mand STATIC (default values are underlined): 

STATIC,ÜNITS=OFF/ON. 

STATIC,SET/USE=OFF/ON. 

STATIC,ASSERT/ACTUAL=OFF/ON. 

STATIC,MODE-OFF/ON. 

STATIC,CALL=OFF/ON. 

STATIC,GRAPH-OFF/ON. 

STATIC,LOOP=OFF/ON. 

o 
Separate commands are necessary for changing the default for each 

type of analysis. 

( ) 

The rest of this section describes the analysis performed by each 

of the conmands, illustrates the kinds of errors which can be detected, 

and explains the static analysis reports. 

4.1.1 Physical Units 

Description 

Requiring that each local variable and each global variable be 

specified in terms of the physical units it represents (if any) allows 

comprehensive checking of the consistency of units. This type of check- 

ing is particularly relevant to technical software where many physical 

properties are represented and there are many possibilities of confusion 

over units. Units can be checked not only in one module, but across two 

or more modules if each module contains a description of the units for 

each physical variable it refers to, in the form of an assertion: 
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UNITS (variable list 1 ■ units expression 1, 

variable list 2 = units expression 2, ...) 

An inconsistency in units is indicated if unlike units are added, sub- 

tracted, or compared. The physical-units analysis compares the right 

and left side of assignment statements, the right and left side of re- 

lational operations, and actual and formal parameters. For convenience 

in stating UNITS assertions, all constants are assumed to be unitless, 

except for zero, which will match any units expression. A variable is 

declared unitless by stating that its units expression is the constant 

1, as in UNITS (PI = 1). 

Option Selection 

The physical-units analysis is not performed unless the option is 

selected by the command 

STATIC,UNITS = ON. 

Reports 

The units asserted to be associated with each variable appear in 

the Symbol Analysis Summary of the Static Analysis report. This report, 

for a subroutiine called XAMPL, Is shown in Fig, 4.1. The last column 

shows the asserted units for variables R, H, A, and V. 

If a physical quantity is asserted to be in units other than 

actually calculated, the unitr* consistency check will identify such an 

inconsistency within a given statement, and also indicate interface 

errors which arise when defined units of parameters passed between 

routines do not match. All such inconsistencies will be reported in 

the Statement Analysis Summary of the Static Analysis report. 

) 
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SUTIC   ANALYSIS   CCNT... SUDHOUTUE   XAMl'L   I   HI   H,   A,   V   ) 

KAKC CLASS MDH 
1ST      TOTAL     LAST   ASStRTLO   ACTUAL   PHTSlrAL 

STMT        USES     STMT Uic        USE UIJITS 

H PAHÄMETEn REAL t             5 

h PAKAMtTEB REAL <«     6 

* PARAMETER REAL 5   e 

V PARAMETER «LAL H              b 

STMEOL Af.ALYSlS SOMHARY 

INPUT INPUT FEET 

INPUT INPUT FEET 

OUTPUT OUTPUT FEET ♦♦ ? 

OUTPUT OUTPUT FEET *♦ S 

tRRCRS  MAKNIN6S 

ASSERT/ACTUAL USE CONSISTFNCY 
SET/USE CHECKING 

Figure 4.1.  Symbol Analysis Summary 

Figure 4.2 shows this report for subroutine CIRCLE. An error 

message has been printed to show that AREA has been defined as FEET**2 

and that the square of RADIUS would be IKCHES**2. The units on both 

sides of an equation must be equivalent. 

Figure 4.3 shows another type of units error, in subroutine ARITH. 

The inconsistency in the spelling of FEET has resulted in the same type 

of operation error as before. 

n 
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SIATIC ANALYSIS SU&RCUTIKE: CIRCLE ( RADIUSI AREA ) 
) 

1 
2 
3 
<t 
5 
6 

7 
a 
9 

10 

SUUROUTIKE CIRCLL ( RAUIUS. AREA ) 
UNiTS ( RACIUS = INCHfS. AHLA = FEET ♦♦ 2i PI s J ) 
CATA PI / a.mifc / 
INPUT ( HACIUS ) 

AREA = Pi « RACIUS *• 2 

UMTS ERKOR 
=     OPERATION WITH INCONSISTENT UNITS 
( FEET ♦ FEET ) 
( INCHES * INCHES > 

OUTPUT ( AREA » 
RETURN 
ENÜ 

STATEMLNT ANALYSIS SUMKAHY 

GRAPH CHECKING 
CALL CHECKING 
UMT.s CONSISTENCY 
MODE CHLCKING 

ERRORS  WARNINGS 

Figure 4.2. Units Error Report due to Incorrect Units 

SIATIC Af.ALYSIS SULUCUTlfjE AimH ( AKEA. hflOHT» VOLUME > 

1 

1 
2 
3 
>* 

SUtHOUTlNE ARITH ( AREAi HfiGHT. VOLUME > 
UNITS ( AREA = FT ♦♦ 2i HET(iHT = FtET, VOLUME 
INPUT ( AREA, HEIGHT ) 

VOLUME s AREA • HEIGHT 

FEET •♦ 3 ) 

6 
7 
<i 
9 

UNITS ERROR 
=     OPERATION WITH INCONSISTENT UNITS 
( FELT • FEET ♦ FEET ) 
( FEET ♦ FT • FT ) 

OUTPUT ( VOLUHE I 
htTUHfj 
t-NL 

STATEMLNT ANALYSIS SUMMARY 

GHAPH CHECKING 
CALL CHECKING 
UNITS CONSISTENCY 
Mv.CE CHLCKING 

ERRORS  WARNINGS 

Figure 4.3. Units Error Report due to Misspelling 

/o 
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Figure 4.4 shows that the units analysis of the routine XAMPL, 

which calls CIRCLE and ARITH, has discovered the inconsistency in units 

of the parameters resulting from the two previous errors: 

1. R, correctly specified as FEET, corresponds to RADIUS, 

which was incorrectly specified as INCHES. 

2. A is defined as FEET**2 and AREA as FT**2. 

SIATIC ANALYSIS 

1 
2 
3 
« 
5 

SUlillOUTirgE   XAKPl   (   fi.   Ht   A,   V   ) 

7 
a 
9 

10 

SUbRüuTINE   XAfPL   (   fit   Hi   A,   V   ) 
UMTS   (   H   s  KLT,   H   =  FEiT.   A  =  KEET   •«   2t   W   =  FEET   *•   3   » 
INPUT I H, H ) 

CAtL CIRCLE ( R, A ) 

UNITS  LHHOH 
= OPERATION   isilTH   iNCOfvSlSTErji   UWITS 
FEET 
INCHES 

CALL   AKI1H   (   A,   H.   V   ) 

UNITS ERnoR 
=    OPERATION ImlTH INCONSISTENT UNITS 
( FEET • FEET ) 
( FT • FT ) 

OUTPUT i *i V ) 
HETURfj 
tm 
STATEMLNT AnALYSIS SUMVARY 

brtAPh CHECKiNC 
CALL CHECKING 
U.JITS CONSISTENCY 
MODE CHECKING 

ERRORS  WAHNINGS 

0 
a 
0 
0 

Figure 4.4.  Units Error Report due to Mismatched Parameter/Argument 
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4.1.2  SET/USE 

Description 

Just as misuse of physical units is a source of many errors in soft- 

ware systems, so is improper use of program variables. The technique of 

data flow analysis detects anomalies in the use of variables such as 

• Reference to a variable before it has been assigned 

a value 

• Failure to reference a variable after it had been 

assigned a value 

Causes range from simple misspelling to mismatched argument or 

parameter lists. Not only are these more obvious errors detected, but 

also more subtle inconsistencies can be found because the flow of data 

between procedures is examined. When no data flow anomalies have been 

uncovered, their absence can be assured. 

Option Selection 

The option to perform the SET/USE analysis of all variables is 

automatically selected with the command. 

STATIC. 

The option may be turned off by the command 

STATIC,SET/USE - OFF. 

Report 

Figure 4.5 is a listing of a subroutine SETUSE. The Symbol Analysis 

Summary from the Static Analysis report on SET/USE (Fig. 4.6) indicates 

that neither DIAMTR nor PI had been assigned a value being used. 

) 
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r 
M'eKCl.Tif.C   SETLbL 

F-Hll.T   1.    (H/iflUi.    «RtA   I 
FC^AT   (   2   (F6.il    1 
FtTuMi, 

Figure 4.5.  Subroutine SETUSE Statement Listing 

f.AKE CLAiS ► CDL 
1ST  TOTAL  LAST ASSFRTIO »CTUAL PHYSICAL 

STyf   USES  <T»I      UhE   USE    UNITS 

0 
NAClUS 

LJAMTH 

ARE« 

►I 

LOCAL 

LOCAL 

LOCAL 

LOCAL 

RLAL 

RLAL 

. VARIABLE OIANTR UsEO BLFCRE BEING ASSIGNED A VALnE 
- 

RLAL 

BtAL 

1            2 5 

H 

• 
VARIABLE M 

SeT/LSL ENRQR 
USED BEFORE uEING ASSIGNED A VALUE 

• 

STCfaCL ANALYSIS SUVHARY 

SLT/USE CHECKING 

ERRORS  EARNINGS 

' a    "5 

O 

Figure A.6.  Symbol Analysis Summary with Uninitialized Variables Errors 
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A.1.3 ASSERT/ACTUAL 

Description 

A third type of interface consistency checking is to compare the 

actual use of global variables, as determined by the data flow analysis 

of variables (see Sec. 4.1.2), with the asserted use. 

The asserted use of a variable is stated in INPUT and OUTPUT 

assertions: 

INPUT (variable list) 

OUTPUT (variable list) 

An INPUT variable whose value may be changed in the routine should also 

be included in the OUTPUT variable list. 

An INPUT assertion states that the variables named: 

• Are global variables (either parameters or common variables) 

• Will have values whenever the routine is called 

• Will not be changed in the routine (unless they have also 

been listed in the OUTPUT assertion) 

• Are the only global variables used In this routine 

An OUTPUT assertion states that the variables listed: 

• Are global variables (either parameters or common variables) 

• Will be assigned a value in the routine 

• Will not be used to supply a value to the routine, 

unless they have also been listed as INPUT variables 

• Are the only global variables set in this routine. 

5 

) 
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A listing of  subroutine CIRCLE appears in Fig.  4.7. 

JsLl HCUlIljL   CIKCLI-    IHAtUUisi   AMtA) 

LulTS   (   it/>LltjS   =   INCHt&i   AKtri   s   ft.Ll**?.,   Pi   =   1    J 
üA TA   t-I   /i.mif;/ 

AKtA   =   Hi   •   HAllUi»**? 

Figure 4.7.  Statement Listing for CIRCLE 

In the CIRCLE routine, the assertion 

INPUT (RADIUS) 

is consistent if the first use of RADIUS on each path in CIRCLE is one 

of the following: 

1. On the rlghc-hand side of an assignment statement 

2. Within a decision predicate 

3. In r| subroutine or function reference where RADIUS is 

used as input 

The assertion 

OUTPUT (AREA) 

is consistent if any use of AREA in CIRCLE is one of the following: 

1. On the left-hand side of an assignment statement 

2. In a READ statement 

3. In a subroutine or function reference where AREA is used 

as output. 
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Asser ions about the use of arrays apply to the whole array, not 

individual ej-etnents of the array. This is necessary because data flow 

analysis does not  distinguish the actual use of  individual array elements. 

Option Selection 

The asserted/actual emphasis is not performed unless the option 

is  selected by the  command 

; STATIC,ASSERT/ACTUAL=ON. 

Report 

The report provided by this option indicates the number of incon- 

sistencies, either as errors or warnings. For subroutine ARITH, listed 

in Fig. 4.8, the Symbol Analysis Summary is shown in Fig. 4.9. 

The first error occurs because HEIGHT has been listed incorrectly 

as an OUTPUT variable; its actual use Indicates that it is an INPUT 

parameter which supplies a value for the computation of VOLUME. 

The second error results because TOTAL has not been listed as 

either INPUT or OUTPUT and hence has no asserted use. Because it is a 

global variable (a parameter), it must be declared. 

The third error is of the SET/USE type described in Sec. 4.1.2. 

NUMBER is neither in common nor a parameter and so is a local variable; 

however, it is used in the computation of TOTAL before it has been given 

a value. 

I 
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SlMtHU  LISUN6 SUUUCUTIur.   AMI1H   <   AREA»   HFI&HI,   WüLUKt.   THTML   1 

(C.   LC<tL L«LtL        äTAI.^LM   tLXT... 

1 
i 
1 
% 
5 
t 
7 
6 
9 

1C 

bUtsUitllht   AKltH   I   AHlAi   HCIGHTi   VOLUPt .    ICTAL   > 
livi-LT    (   AhlA   ) 
bkll*    (   AHLA   ■   FLIT   •«   2,   HllGhl    z   Ht1 ,    WOLUKt   s   fltl   »*   3   ) 

VOk.CKE.   ■   AKLA   *   MClGHT 
TOTAL   :   M.futH   *   VJLOML 

CUlPUT    (   ^EIOHT.   VÜLUKL   1 
KCtURtl 
Llal. 

Figure 4.8.     Statement Listing for AR1TH 

SIMIC   A.ALf&ib  LLI.T... SUUHCUTIIL   ÖHIIH   I   AHLA«   lEIcHl.    VOLUI't.   Tr.TAL   ) 

f Ml 

AREA 

►•EIGHT 

VOLUKt 

ICTAL 

NUHBEK 

CLASi KCCE 
1ST  TOTAL  LAST AbSERTLC ACTUAL fHYSlCAL 

STfT   USES  STwT     USE   LSE    UMlTi 

FAhAKtTE« hLAL 

PARA^ETE'' UtAL 

1     <4     5     INPUT   INPUT   FffcT •• 9 

1     H     d    CUTPLT  INPUT   FELT 

. ACTUAL   USE CF 
ASSERl/AdUAL ERROR 

HEIGHT            t-QtS  NUT   MATCH   AssEPtEU  LSE - 

PARAftTE«  RfcAL 

PAHAftTE»   KtAU 

X             5 

i         i 

e            ClUPtl     OUTPUT     FEET   ••   » 

b                               OUTPUT 

- 
ALIUAL   UaE OF 

»SSEKT/AClUAl   EHRCR 
TOTAL              LOES   NUT   MATCH  ASISCRTEü  USL 

- 

LOCAL            InTEGcR 6             1 6 

- SET/USL  tKROh 
VARIABLE   i^LKULP            i.s£ü  BEFCI.E   üEINti   AüSI&NEO   A   V«LtE - 

SfMCL ANALTSlS SüK!<AflY 

AiSLRT/ALlUAL USE COKSISTfMCT 
bLT/l,St CHECKING 

ERKCRS  WAhNUlGS 

O 

Figure 4.9.    Symbol Analysis Summary with Variable Use Assertion Errors 
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4.1.4 MODE 

Description 

Potential errors which result from inconsistencies in the mode of 

variables (REAL, INTEGER, etc.) can be found in the static analysis 

checking of expressions. 

Option Selection 

Mode checking is one of the options which is included in the an- 

alysis performed by the command, STATIC. To turn off the option 

STATIC,MODE-OFF. 

must be commanded before the STATIC command. 

Report 

The Symbol Analysis Summary of the Static Analysis report lists the 

name and mode of each variable which has been set or used in a routine. 

A mode inconsistency causes a warning to be printed immediately 

following the statement  in which it occurs in the  listing,  and the 

number    of warnings i»  tabulated in the Statement Analysis Summary. 

Figure 4.10 is a listing of subroutine MODE;   It contains two mode 

errors,  as can be seen  in Fig.   4.11. 
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SlftTtKUT   LISTING SÜBMOUTINt   vOnt   (   VALUE.   1ENÜ.   IARHAT.   ARBAY?   ) 

liC.   LtVEL LAisFL        b^ATtCL^T   UXT... 

^UuBCumE MOCE ( VALUE. Iti.C. IARHA 
C 

i:I»<ENSlCN lAhRAY ( 1 |, AKRAY2 1 1 ) 
N ■ 1 
N ■ VALUE 
k.HlLE ( f   .LE. ItNU 1 

7 1) ,  IARKAY ( M ) s ARRAYS 1 H   ) 
e li .  M » M ♦ i 
9 1) .  N = N ♦ 1 

10 CHbMilkC 
11 C 
12 RCTUHM 
13 IMl 

Figure 4.10.  Statement Listing for Subroutine MODE 

SIATJC  Af.AUtSIS SUbHOUTIKE   font   I   VALUE.   JtNL.   IARHAT.   AKRAY2   ) 

0 

6 
7 i   II 

6 ( 1) 
9 I 11 

10 
11 
12 
13 

SUdROLmC KOCE I VALUE. ICUÜ,   lARRAt, ARKAT2 > 

OlKENsKiN IAKRAT (II. AKRAY2 ( 1 I 
f   s 1 
N * VALUE 

KCüE hAiIMNG 
-  LErT HANÜ slDE MAS KODE INTEGERBIGHT HANO SIÜE HAS «"DE RtAl 

« 

kHlLE ( f   .LE. ILNÜ ) 
.  IARHAT 1 H ) s ARKAY2 ( IM ) 

HCDE l«ARMN6 
•  LEFT hANO SIDE h#S KOOE INTCGCKRIGHT HAMO SIDE HAS MnOE REAL - 

,  H a K ♦ l 
.  N s K ♦ 1 
EhLtiHlLE, 

KETUHN 
END 

STATCMLKT ANALYSIS SüKMAHY 

GRAPH CHECKING 
CALL CHECKING 
MÜDE CHECKING 

ERRORS  WARNINGS 

o 
Figure 4.11.  Statement Analysis Summary with Mode Warnings 
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4.1.5 CALL 

Description 

Another of the static analysis options specifies Interprocedurai 

checking of subroutine or procedure Invocations to reveal situations 

which may lead to errors, such as: 

• The number of parameters listed does not agree with 

those of the routine called. 
i 

• The mode of an actual parameter does not match that 

of the corresponding formal parameter. 

• A parameter Is listed In the calling argument list 

as a single, non-subscripted variable but is used 

in the routine as an array. 

• The routine called does not exist in the set of modules 

being tested. 

Option Selection 

Call checking of parameter lists Is automatically Included in the 

analysis specified by the STATIC command. If the option is not wanted, 

it Is turned off by the command 

STATIC,CALL-OFF. 

Report 

Figures 4.12 and A.13 are listings of Subroutines CIRCLE and ARITH 

(somewhat different from those given in Figs. 4.7 and 4.8). 
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SIAUKENT LISTING SUnnOUTINE ClHtLE ( HACIUbi ARIA ) 

NO. LtVEU    LAbEL   ST/.Tt.ft.KT TtXT... 

C 

c 

hOcKUUIIKL   CIHCLL    (   RADIUS.    AHlA    > 
LAIA   PI   /   3.mi6   / 

ARkA   =   PI   «   KAÜIUS   •«   i. 

KETUKN 

Figure A.12.     Statement Listing:     Subroutine CIRCLE 

0 

SIATEI-LNT   LISTING SULWOUTIfvE   A^lTH   J   AKEA.   HElGHTi   VOLUKE   ) 

NC.   LEVEL LAdEL i.T A I£|.,L(\T   TEXT... 

1 SUbhoUIIKE   AKiTH   (   AREA.   HfiGM 
2 LlKEIISiO.N   VULljML    (    10U    1 
3 LA1A   hlGhfX   /   iü.O   / 
•» C 
5 I   =   1 
6 hEiGHf   B   20.tb 
7 iNHiLt   (   f-LIGMT   ,UT,   HIGHyX    ) 
b   (   1) .      VGLU^E   (   I    )   =   AREA   •   HEIGHT 
9   (   1) .      I   =   I   ♦   1 

10   (   1) ,      HETGHT   s   HEIGHT   ♦   0.35 
U ENblftHILE 
12 c 
13 HETLRiv. 
l<» ENü 

Figure 4.13.  Statement Listing:  Subroutine ARITH 

O 

A report showing interface inconsistencies among three modules is 

generated in the Statement Analysis Summary for Subroutine XAMPL, Fig. 4.14. 

The first error occurs because CIRCLE has two arguments (RADIUS and 

AREA) and the invocation has one. Two errors result from the invocation 

of Subroutine ARITH.  The variable H has been declared as an integer, 

but HEIGHT, the variable in ARITH which corresponds to H , is real. 

The variable V is a single, non-subscripted variable, but, in ARITH, 

VOLUME has been dimensioned as an array. 
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s'Mir tMirm SbBnoUTINC «»KfL ( «. H, «, w I 

SUHROUTIKC r.t.kPi.   ( n, H. A, v > 

C»LL   CIBCLE   (   R   1 

CIRCLE c»iun 
OLL cnnon 

HTM     1   »CTUALI.»   HAS     a   ««»llHtNTS 
■ 

C«UL   «.in«   1   «.   M V   1 

.►'»KHI'Clt«        J   OF ARITH 
CALL cnncR 

.AcTü'L   CAH/iI'LTtR   HAS  fODC   »EAL 
,FüH>*L   PmiAwLTtR   HAS   >>CDt   INTEGER 

- 

-HJflilKCTtH        3   OF ASITM 
CALL   ErtHCR 

VAKIAULC   P«S!>E0   AS   AN   AAHAV - 
CALL Fll.lSh 

BITUHN 
CM 

STATCHM ANALYSIS SLP"6H» 

CHJPH CKCK1(;C 
CALL CUCKU.G 
fCCC CHICKING 

CHPCnS  hAKNINGS 

NO CALL CHECKING Fo" FINISH 

Figure A.1A.  Statement Analysis Summary Showing Calling Errors 

Subroutine FINISH was not included in the set of routines examined 

in this static analysis.  Although this is not an actual error, a message 

is printed on the right side of the report as a reminder. 

4.1.6 Unreachable Statements 

Description 

An obvious consistency check is that of structural consistency. 

The program graph for each module can be checked to see that all state- 

ments are reachable from each statement. Unreachable statements repre- 

sent extra overhead in terms of memory space required for a module, while 

statements from which the exit cannot be reached represent potentially 

catastrophic system failures. 

Option Selection 

The checking for unreachable statements is automatically included 
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( in the analysis specified by the STATIC command, 

wanted, It is turned off by the command 

STATIC,GRAPH-OFF 

If the option is not 

O 

Report 

Figure 4.15 is a statement listing of NOPATH.  In this subroutine. 

Statement 7 Is a RETURN statement. The two executable statements which 

follow it are unreachable, and a warning message is printed for each in 

the Statement Analysis Summary (Fig. 4.16). 

M). LtVEU LAtCl. iTATLftM   UXT... 
V 

SUbftOUTlKL   NUHATh   (   OIAMTK. AREA   ) 
c 

t.AIA   Pi   /   3.1416   / 
c 

KAL1US   s  OIAHTR   t   i 
AKkA   :  pi   *  RADIUS   •*  2 
HUlHK 
PHlrjT   1,   (   HAOIUSt   AHLA   ) 

1 FOHPAT   (   2   i',t,H    | 
10 RtTLRt. 
U ENÜ 

Figure 4.15.  Statement Listing of Subroutine NOPATH 

$I«TIC RMlTltl suruouiiM NOrATH  (   OIAMIH.  ABEA   1 

C 

C 

1 

SUUHOUTINC   NbrATH   1   C1AK7H.   AKFA   1 

CAIA it / a.ixtb / 

iMDIUfl  <  CIAnTR  /  k 
»Ht»   »   pj   •   HADH/S   ••   2 
KCItKK 
FRJt.T   1.   (   HAOlUS.   Adt»   1                                                                            ^ 

STAUXENT       c 
GHAPH   kAKhIN« 

IS kMHCAOAULt  CR   Ig   IN  AN  INFINITE  LOOP ■ 

JO 
fOHfAT    (   2    (FC,.?)    1 
Rt(l.R;. 

s^«Tc^'C^T   lo 
GRAPH   kARMftC 

IS UNREACHAUU  OR  IS  IN  AN  INFINITE LOOP 
* 

11 V>i> 

Sr*T(KLl.T   ANALYSIS   SüKX»H»                     IMOCIIS      WARNINGS 

(.KAf*   ChtCHll.6 
CCLL   CliLCKlltC 
MUCC   CHCCKINS 

0                     2 
0                     0 
0                     0 

Figure 4.16. Statement Analysis Summary with Unreachable Statement 
Errors 
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4.1.7 Loop Constructs 

Description 

One of the most frustrating and common errors is an infinite loop 

construct, A check on structural consistencies determines if this pos- 

sibility exists. 

Option Selection 

This option is on when the STATIC analysis is performed unless it 

has been turned off with the command 

STATIC,LOOP=OFF. 

Report 

No report is generated unless the possibility of an infinite loop 

construct exists.  If such a construct has been located, a loop analysis 

report is generated containing a warning message and the statements of 

the loop in question. 

Some errors of this type are not immediately obvious and, therefore, 

are difficult to detect.  One such error is in subroutine SEARCH, listed 

in Fig. 4.17. Figure 4.18 shows the report, which includes the portion 

of the code where there may be an infinite loop. The infinite loop 

would occur when the ELSE path is taken: LOOKUP is set to I , but 

neither M nor N is modified, so that the conditions of the loop would 

be infinitely repeated. 
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fO.   LfwEL LAUEL        bTATLKtM   TLXT., 

(   1) 
(   II 

1 
2 
3 

t 
b 
7 
fa 
9   (   2) 

10 (   II 
11 (   2) 
12 (   D 
13 ( 2) 
1<* ( 1) 
15 
16 
17 
ie 

iUi^OUUNE   SEARCH   (   AOKAYi   LENfiTH«   Xi   LOOKUP   ) 
IM'tOEH   ARrtAY   (   1   ».   x 

K   =   1 
K   =   LFNGlh 
fcHILE    (   ^   ♦   1   . LI .   N   1 
.      1   =    <   f   ♦   N 1 /   ? 
.      IF    (    X   .LT. Ar IRAY   ( I )    ) 
.      .      U   «   I 
.     CRIF   i   X   .GT. ARRAY I I    >    ) 
.      .     «   =   I 
.     EL<iL 
.      .      LCCKtP   s 1 
.     EMr;IF 
ENC^HILE 

HEIURK 

ENu 

Figure 4.17.     Statement Listing of Subroutine SEARCH 

**RMNC...P0SS13LE   RFIMTE   LC0P...N0  ESCAPE   VARIABLE   IS   »»OCIFIED  ON  ALL  PATHS. 

6 
7 i 1) 
e ( i) 
9 ( 21 

10 ( 1) 
11 ( 21 
12 ( 1) 
13 ( 2) 
1-4 ( 1) 
IS 

taHlLE   <   N   ♦   1   .LT.   ti   I 
.      X   S   (   *   4  tt   )   /  S 
.      IF   (   X   .LT.   ARRAY   (   T   )   > 
.     .     N «  I 
.     CRfF   (   X   .GT.   ARKAY   11)1 
.      .      W   =   I 
.     EL«:E 
.      .     LOCKUP   s   I 
.     ENr.IF 
ENChHlLE 

Figure 4.18.     Loop Analysis Warning Report 
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• 4.2   PHYSICAL UNITS CONSISTENCY ANALYSIS 

Physical units checking Is an excellent example of consistency 

analysis using a partial program specification at the source language 

level of detail.  The units tester uses UNITS statements (described In 

Sec. 3) to associate specified physical units with program variables. 

If program variables RGB, RHO, GR2, and BETA are specified by 

UNITS(RGB ■ 1/FT) 

UNITS(RHO = (SEC**2)/LBS) 

UNITS(GR2 = FT/(SEC**2)) 

UNITS(BETA - LBS/(FT**2)) 

then the computation of RGB as 

RGB - (-RH0*GR2)/BETA 

is consistent.  This can be verified by substitution of unit qualifiers 

and simplification.  The right-hand side of this assignment statemeat 

becomes 

(-((SEC**2)/LBS)*FT/(SEC**2))/(LBS/(FT**2)) 

cancelling the (SEC**2) terms results in 

(-FT/LBS)/(LBS/FT**2) 

cancelling common FT and LBS terms, and dropping the minus sign yields 

(1/FT) 

which matches the units description of the left-hand side of the assign- 

ment statement. 

An algorithm to automatically perform this substitution and simpli- 

fication process has been implemented in the Software Quality Lab. The 

physical units checking process transforms each arithmetic expression into 

a tree with unit qualifiers as nudes. Unit qualifiers associated with 

variables are specified with UNITS statements.  Figure 4.19 Indicates 

physical units assertions, the statement to be analyzed and the units 

tree which results. 
™ 
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UNITS (RGB ■ l/FT) 
UNITS (RHO ■ (SEC"2)/LBS) 
UNITS (SR2 ■ rr/(SEC**2)) 
UNITS (BETA ■ LBS/(FT**Z)) 

RGB • - RHO * GR2/BETA 

/ 

FT   2 

SEC   Z 

Figure 4.19. Physical Units Tree 

The physical units simplification and aormalization rules which 

are applied by the algorithm are shown in Fig. 20 and Fig. 21.  Since 

like units can be added or subtracted, the addition rule in Fig. 20 

removes addition and subtraction operators from the physical units tree. 

Like units can also be compared. The relational rule in Fig. 4.20 

replaces relational operators (greater than, equal, not equal, etc.) 

with the valua TRUE. The addition, subtraction, or comparison of un- 

like physical units immediately results in a units inconsistency. 

Additional simplification rules Include cancellation of like units in a 

numerator and denominator, dropping unary minus and unary plus operators, 

and logical operation simplification. 

Normalization rules are limited to multiplication, division, and 

exponentation operators since all other operators are simplified out. 

The cummulative property of multiplication is used to lexically order 



ORIGINAL EXPRESSION SIMPLIFY RULE SIMPLIFIED EXPRESSION 
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ADDITION 
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FT SEC 
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00 

FT FT 

RELATION 

0 
TRUE 

CANCELLATION 
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FT 

FT 

SEC 
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TRUE 

Figure 4.20.  Physical Units Simplification Rules 
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ORIGINAL EXPRESSION NORMALIZATION RULE NORMALIZED EXPRESSION 

* COMMUTATIVE 

• 

0 

DIVISION 

SEC FT T FT SEC ^ 

EXPONENTIATION 

o 
SEC 2 V SEC S'EC 

MULTIPLICATION 

^ B  C D A r   R ^i C    B 

/ \ / \      v      /\ /\ 

Figure 4.21. Physical Units Normalization Rules 
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all product terms (Fig. 4.21). Exponentiation operations are convertc . 

to an equivalent product term (this limits the analysis to integer expon- 

ents).  The normal form for units expressions is a quotient of ordered 

product terms.  The multiplication and division normalizations in Fig. 

4.21 maintain this form by moving ail division operators to the root of 

the physical units tree being analyzed. 

The physical units consistency analyzer applies these rules as the 

physical units tree is walked.  Each subtree of a nonterminal node must 

be in normalized, simplified form before the rules are applied to that non- 

terminal node.  A recursive description of the algorithm is given in 

Fig. 4.22. 
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Figure 4.22.  Physical Units Consistency Analysis Algorithm 
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4.3  DATA FLOW ANALYSIS 

Improper use of program variables is a major souce of errors in 
21 

large software systems.  The technique of data flow analysis  detects 

anomalies in the use of variables such as references to a variable before 

it has been assigned a value. 

The results of data flow analysis technique in the Software Quality 

Laboratory are similar to that performed by the DAVE system.  A leaf-first 

analysis of the system calling tree is performed.  While the DAVE system 

analyzes each module with a variable-by-variable depth first search, the 

Software Quality Laboratory performs a parallel analysis of all variables 

in a module. The resulting computation time can be several orders of 

magnitude faster with the parallel analysis technique. 

Both techniques are applicable to FORTRAN source code.  DAVE is 

limited to ANSII standard FORTRAN. The Software Quality Laboratory can 

analyze common extensions to ANSII FORTRAN, including a dialect of struc- 

tured FORTRAN(IFTRAN). The Software Quality Laboratory techniques in- 

clude optional consis.tency checking of actual variables usage and desired 

variable visage. DAVE does not provide this additional check. 

Data flow analysis classifies the usage of all program variables. 

A variable is used as output (to receive a value) if any of its uses is 

one of the following: 

1. On the left-hand side of an assignment statement 

2. In an initialization statement such as a DATA statement 

3. In a READ statement 

A variable is used as input (to supply a value) if its first use on 

some path is one of the following: 

1. On the right-hand side of an assignment statement 

2. Within a decision predicate 

3. Within a WRITE statement. 
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A path originates at the entry to the software system, follows one of 

many structurally possible routes thru the software, and terminates at 

ah exit from the software system. A path will, in general, go through 

more than one module of a multi-module software system. 

A naive approach to data flow analysis is to identify all possible 

paths and compute the use of each program variable on each path. This 

approach quickly runs into the combinatorics problem of too many paths 

in even moderately sized software systems. Several techniques are avail- 

able to dramatically improve the efficiency of data flow analysis. The 

first technique uses a software system's intermodule calling structure. 

The calling structure is represented as a tree whose root is the main 

module in the software system. The calling tree is then analyzed in a 

bottom-up fashion. Modules which do not invoke any other modules (leaf 

modules) are analyzed first. Then modules which invoke only leaf modules 

are analyzed, etc.  After a module has been analyzed, it can be represented 

in terms of its variables and how they are used rather than as a set of 

statements with an inherent structure. Each module is only analyzed once 

when this techique is used. A similar technique allows each statement in 

each module to be analyzed only once during a complete data flow analysis 

for all program variables. This technique is based on (but not limited 

to) a well-structured, single-entry, single-exit program graph. Data flow 

analysis proceeds sequentially thru each statement in a well structured 

program. The use state of each program variable is updated as statements 

are sequentially analyzed. Control statements from which several parallel 

paths originate cause parallel use states to be computed. Control state- 

ments at which several parallel paths rejoin cause parallel use states to 

be combined into one use state. Data flow analysis of the following 

statements 
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ä I 1. A = X 

2. IF(A  .GT.  Y) 

3. A = Y 

4. ELSE 

5. Y = A 

6. END  IF 

* 

would be performed in the following steps: 

1. Statement 1 uses X as input and A as output. 

2. Statement 2 adds use of Y and A as input to the 

use-state and stacks the current use-state. 

3. Statement 3 uses A as output and Y as input (this 

is already described in the use-state for the path 

originating at Statement 2). 

4. Statement 4 pops the use-state and then stacks the 

use-state of the former path. 

5. Statement 5 adds use of Y as output to the use-state 

for the second path originating at Statement 2. 

6. Statement 6 pops the use-state stack and causes the two 

current use-states to be combined into one.  The com- 

bined use-state is use of A as output and input on all 

paths, use of X as input on all paths, use of Y as 

input on all paths, and as output on some paths. 

Iterative constructs are processed once in the same sequential manner. 

As described earlier, references to functions or subroutines will have 

known variable use properties since the function or subroutine will 

already have been analyzed. When the analysis of a module is complete, 

use of local variables as input on some or all paths indicates a data 

flow anomaly, and use of all global variables is available to compare 

with data access assertions and to define the use properties of the module. 

■ 
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^ 
An algorithm to automatically perform data flow analysis in the 

manner just described has been implemented in the Software Quality 

Laboratory.  The implementation of the algorithm distinguishes three 

types of output useage.  They are: 

50 output on all paths 

0 output on some paths 

N   not used as output. 

Similarly three types of input useage are distinguished; they are: 

51 input on all paths 

1 input on some paths 

N   not used as input. 

To allow for undefined externals, an additional unknown state, U , is 

distinguished. Ten input/ouptut states for a given variable are possible: 

(N,N) 

(SI.N) 

(N,S0) 

(SI,SO) 

(I.N) 

(8,0) 

(1,0) 

8 (I,SO) 

9 (SI.O) 

10 (U) 

A local variable is used before being assigned a value if its input state 

is SI .  It may be used before having a value if its input state is I . 

A global variable's actual use is consistent with asserted input usage 

only If its input state is SI or I , and consistent with asserted 

output usage only if its output state is SO or 0 . The use state for 

a path is implemented as a 2-by-N array, where N is the. number of 

variables which have been used or set. The use of each variable is 

associated with its symbol table pointer, and the array is ordered by 

) 
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symbol table entry.  A variable width stack is used to temporarily store 

use states during the data flow analysis of a module. 

The data flow analysis algorithm can be applied to unstructured 

prograiro. A graphical analysis is performed which represents unstruc- 

tured programs in a structured manner. The basic structured forms are 

sequential, parallel, and iterative combinations of single-entry, single- 

exit sequences of statements (Fig. 4.23). The graphical analysis per- 

formed is based on two properties of the three basic structured forms. 

Each of the basic forms can be characterized as a single entry/single 

exit subgraph. Also the graph of a structured program which uses only 

the basic forms is built up of well-nested single entry/single exit sub- 

graph, the complexity of the graph can be reduced by replacing an identi- 

fied form with a single edge which goes from its single entry to its 

single exit. It ie then possible to repeat this process and identify 

basic forms which previously were composed of more complex structures than 

the edges which have been inserted. The process terminates when the re- 

sulting graph consists of a single edge from the entry of the module to 

the exit from the module. As the reductions are being performed, it is 

essential to maintain a data structure which indicates the basic form 

identified and the single entry/single e-it (SE/SE) subgraphs of which it 

is composed. The natural data structure for this information is a hier- 

archy of SE/SE subgraphs. The structure of this helrarchy corresponds 

directly with the well-nested, indented representation of the text as a 

structured program. 

The SE/SE tree (the structured graphical representation of the 

program) is used to perform the data flow analysis of both structured and 

unstructured programs. The algorithm involves walking the SE/SE tree 

and computing the use state for each node in the SE/SE tree after the use 

states of its sub-trees have been computed. A description of the data flow 

analysis algorithn» Is presented in Fig. 4.24. 
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STRUCTURED FORMS STRUCTURED CODE "1- 

1» 

A 

B 

IF  (P)  THEN 

A 

ELSE 

B 

END IF 

DO WHILE (P) 

A 

END WHILE 

Figure 4.23.     Basic Structured Forms 
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Figure A.24.    Data Flow Analysis Algorithm 
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Several limitations are Inherent In the simplicity of the data 

flow analysis technique. All structurally possible paths are included 

in the data flow analysis, even though many of them may not be logically- 

executable. Also arrays are treated as single variables. The use of 

individual array elements is not distinguished. The implementation 

currently available in the Software Quality Laboratory does not attempt 

to recognize equivalenced variables during the data flow analysis.  These 

limitations can cause invalid error and warning messages to be generated. 

They do not cause any data flow anomalies to go undetected however. 

,.;■* 
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5    EXECUTION 

Once the techniques described in Sec. 4 lu\ve been applied to show 

that many of the costly semantic errors are not present, the program is 

ready for an execution test.  In the execution test, the Software Quality 

Laboratory provides facilities to show what paths have been tested, what 

paths have not been tested, what assertions are false, what the values of 

the input variables were on module entry, and what the values of the out- 

put variable were on module exit.  These facilities may be enabled or 

disabled by the tester. 

5.1  COVERAGE REPORTS 

The reports which give information as to how well the software is 

being tested in terms of number of tested paths, numbers of untested paths, 

and number of times each path was executed are known as the QUICKLOOK 

coverage reports.  They can aid the tester in devising additional test 

cases, in discovering paths which cannot be executed due to the range of 

valid data, and in pinpointing areas of the program in which most of the 

execution time is spent. 

For the QUICKLOOK coverage reports, the modules for which data are 

to be collected must contain statements which are treated as comments by 

the preprocessor. Such modules are said to be instrumented. 

For IFTRAN the comment statement 

CENTD name 

where name is the module name is placed just before the first executable 

statement in the program. The accompanying figure. Fig. 5.1, shows the 

modules SEARCH and TRACK with these statements which define the modules' 

entry points. 

In addition, one module, usually the first must have the comment 

statement 

C1NST 
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St(i   \,tSl    S,CLKCt 

1 IS   ENTER   ttCK 

2 IS   imhlLC   CO» 

t   IS   IF   THLC. 

1 
2 l-hC&KAK   StARCH   (U.PLn,uLTpUI,TAPEbaOUTPbT,LTtST.TAPE5sINPUTl 
J CIl^ST 
it li.TtiLH   X(i|,lLliniCUNlT 
5 1'L'U   I'iST 
6 CAT« IoMT/5/iCUI.It/6/ 
7 CEMC SEAHCH 

CO PATH 
8 REAC (Riai,l)IX(I)iIsli3) 
9 »HII*. (übl.n .iHAd».1-1.3) 

10 fcHlLl  tLÜMiLl.IT) .EÜ. ul 
CC HATH 

11 1 .IF (X(l) .6T. Ü) 
CD FATH 

12 j .   .   CALL THACKlX) 
15 J .   .   UIST s SI.RT(FLUATtX(l)»xai ♦ Xt2l»X(2; ♦ X(S)»X(3)t> 
1«. 1 .   ELJE 
I'D 3 ,        .   CIST = 0.Ü 
it I .   tl«L IF 
17 i .   »RITE ICLUlTtS) ÜIST 
16 1 .   HLMC lluMTilMXIII •Islii) 
IV 1 .   »RlTL (0CMT.2)U(ll.l3li3) 
2C            LI C «MILE 
21 STOP 

CO PATH    £ IS sTüP 
22 I     f0RI'ATt3I5l 
23 2 HsiO-bl    (7h   INPLTstSIS) 
in                i             FORMAT   (bH  LIST:.17» 
?i LNO 

3   IS   hHILt   EXIT 

S   IS   IF   FALSE 

Sid  r.EST   SCLRCE SUBROUTINE   TI<ACh(XI 

1 
2 
S 
■t 

t 

6 

7 
e 

» 
1C 
n 
12 

13 

1« 
li 
16 
17 

16 
IV 
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SOBHCUTII.E   THACMX) 
IMEüLK   XI3).T(3liIiKIN 
LCGILAU FLAG 
LATA FLAG/.Ti<tE./.MlN/S/ 

CEMC lHACn 

IF (FLAG) 

FLAG t .FALSE. 
fO*   (I s 1 TU 31 

.   .   XIII ■ Till 
LNC FCH 

ELSE 
IF I lABSITIl) - Xdl) .bl. KIN» 

FOR II ■ 1 TO 41 

ELSE 

XII» s Yin 
Et.C FOR 

{ 
FCR II * 1 TO 3» 

Xdl ■ IXIll * VIIIi/2 
Til» a XII» 

END FOR 
tNb IF 

END IF 
HCTCRN 

END 

CC PATH 1 IS INTEK CEtK 

CO PATH 2 IS IF TtiUfi    3 IS IF FALSL 

CO PATH <t IS FOR CC    5 IS FUR EXIT 

CC PATH « IS IF THUE.    7 IS IF FALSE 

CO PATH 8 IS FOR 00,    9 Is FOR EXIT 

CC PATH 10 IS FOR CO,   11 IS FOR EXIT 

CC PATH   12 IS RETURN 

Figure 5.1.     Instrumented Modules 
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f which turns on the instrumentation for the module in which the statement 

appears and all subsequent modules.  Instrumentation may be turned off 

in selected modules by use of the statement 

CNOIN 

which disables the data collection process until another 

CINST 

is encountered. 

' 

o 

Besides preparing the module itself, a QUICKLOOK command set is 

used to select reports which may be presented.  This command set appears 

just after the data cards.  If there is an end of file at the end of the 

data, it must be read by the module. 

Three types of commands are used:  the module select romraands, the 

report select commands, and the print command. 

The module select commands allow reports to be printed for speci- 

fied modules.  The two commands are: 

QUICKLOOK MODULE name 

QUICKLOOK DETAILED name 

If the DETAILED report is desired, the DETAILED command must be used. The 

DETAILED report presents the information In a graphical form which is easy 

to read. 

While the module select commands state the module names for which 

data are to be collected, the report select commands select which print- 

outs are to be given. There are four print options: SUMMARY, NOTHIT, 

DETAILED, and CUMULATIVE. 

The command 

QUICKLOOK PRINT SUMMARY 
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gives the following Information in tabular form covering all the selected 

modules: 

1. Test case number 

2. Module names and number of decision-to-decision paths 

3. Number of module invocations, number of decision-to-decision 

paths traversed, percent coverage for this test case 

4. Total number of module invocations, number of decision-to- 

decision paths, and percent coverage for all test cases. 

Figure 5.2 shows the SUMMARY report as a result of executing the 

modules SEARCH and TRACK with the two sets of input data x = {5,3,6}  and 

x = {7,2,7}  . 

At this point the tester might decide further testing is necessary 

and look at the NOTKIT report to see what paths were not executed and 

refer back to the program listing to see what additional test cases could 

cause the paths to be executed. 

The command 

QUICKLOOK PRINT NOTHIT 

presents the following report  (next page.)   listing the declslon-to-declsion path 

numbers  for  each module which were not  executed.     The  paths are listed 

for each test  case and for all test cases. 

The  tester might   in addition look at   the DETAILED and CUMULATIVE 

reports to see the unexecuted paths and note which paths are executed  the 

most  frequently.     The DETAILED report shows  for each test case the number 

of times a declsion-to-declslon path was executed In,graphical form and 

gives overall coverage data for each module that was selected. 

) 
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The CUMULATIVE command presents the results of several test cases 

in the same graphical format as in the DETAILED report.  Figure 5.3 shows 

the DETAILED report for the test of the modules STACK and SEARCH.  The 

CUMULATIVE report is the same as the DETAILED report in this case. 

These reports are generated as a result of the two commands: 

QUICKLOOK PRINT DETAILED 

QUICKLOOK PRINT CUMULATIVE 

The third type of command is 

QUICKLOOK 

which provides a listing of the requests that were made such as is shown 

in Fig. 5.3 (next page). 

As an example of a QUICKLOOK command set which produced all the 

possible reports for a set of two modules, one of which is the main 

program SEARCH and the other which is the subprogram TRACK is: 

QUICKLOOK DETAILED SEARCH 

QUICKLOOK DETAILED TRACK 

QUICKLOOK PRINT SUMMARY 

QHICKLOOK PRINT NOTHIT 

QUICKLOOK PRINT DETAILED 

QUICKLOOK PRINT CUMULATIVE 

QUICKLOOK 

5.2  ASSERTIONS 

Executable assertions may be used during execution to aid in testing 

and to aid in generating the correct assertions which can be used in the 

formal verification of a program. 

During the testing phase, executable assertions are valuable in 

checking that interfaces have been specified correctly.  While the static 
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analysis techniques described In Sec. 4 will detect most of the serious 

errors, there still remains the possibility of data being out of the 

expected range of values.  This k.nd of error can be detected by explicitly 

stating range restrictions on every input variable in the INITIAL assertion. 

If an error occurs the name of the module and the assertion number is re- 

ported on a listing.  A trace of t;ie values of the input variable values 

which is given by the INPUT assertion should then aid in the detection of 

the source of the error.  The fact that in one module the range of the 

values generated is not consistent with what is expected by a subsequent 

module will be immediately obvious. 

Thus if processing data from a radar which provides a beam number 

between 2 and 1021, a range bin number between 80 and 1600, and a signal 

strength number between 0 and 95, one should have in the processing 

loutine which receives the data as the first executable statements: 

INPUT (/INTEGER/BEAM,RANGE,SIGNAL) 

INITIAL (2 .LE. BEAM .AND. BEAM .LE. 1021) 

* .AND. 80 .LE. RANGE .AND. RANGE .LE. 1600 

* .AND. 0 .LE. SIGNAL .AND. SIGNAL .LE. 95) 

for IFTRAN 

INPUT beam, range, signal; 

INITIAL 2 <= beam AND beam <= 1021 

AND 80 <= range AND range <= 1600 

AND 0 <- signal AND signal <= 95; 

for V-PASCAL. 

( I 

Similar processing is available for the output variables which can 

be checked for their range of values.  If for the example the radar data 

described above was transformed into a cartesian coordinate system where 

the X,Y,Z coordinates were in terms of meters, and it was known that X 

could be between 500 and 100,000 meters,  Y could be between -50,000 and 

40,000 meters, and Z could be between 50 and 75,000 meters, a reasonable- 

ness check could be: 
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OUTPUT (/REAL/X,Y,Z) 

FINAL (500.0 ,LE. X .AND. X .LE. 100000.0 .AND. 

-50000 .LE. Y .AND. Y .LE. 40000.0 .AND. 

50.0 .LE. Z .AND. Z .LE. 75000.0) 

A better check would be to relate the outputs:  X,Y and Z to the inputs 

such as making use of the relation between range and the outputs: 

If 

2   2   2   2 
range = X + Y + Z 

and if 

radar range * k = range in meters 

we could state 

FINAL ((RANGE*K)**2 - (X**2 + Y**2 +Z**2) .LE. RNDOFF) 

for IFTRAN and 

FINAL (range*k)*(range*k) - (x*x + y*y + z*z)   <= rndoff; 

for V-PASCAL. 

5.3  FAULT DETECTION 

Once a program has been verified, it is known that it will produce 

the specified results as stated in the FINAL assertion under the condi- 

tions that are stated in the INITIAL assertion.  The assertions can then 

be used for detection of faults due to bad input data or bad hardware. 

One of the possible causes of catastrophic failure in a computer 

system is bad input data. If the data is from a sensor that normally 

provides more data than is necessary, the bad value can be discarded and 

the system can proceed to accept another value until n bad values In a 

row. 

The assertions with a FAIL clause can be used to provide for fault 

detection with a user-supplied block that can be used for fault recovery. 

) 
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( 
If, for example, it was known that the input SIGNAL should fall between 

5 and 95, and if SIGNAL is invalid an error flag should be set, the 

following assertion could be used: 

ERROR = .FALSE. 

ASSERT (SIGNAL .GE. 5 .AND. SIGNAL .LE. 95) 

*     FAIL (ERROR FIX) 

IF (.NOT. ERROR) 

normal processing 

END IF 

BLOCK (ERROR FIX) 

ERROR = .TRUE. 

END BLOCK 

o In this case, if the input did not meet the specification, rather than a 

report on the listlrg of a false assertion, the user-supplied block named 

ERROR FIX is invoked to set the ERROR flag. 

In V-FASCAL, the same assertion would be: 

error := false; 

ASSERT signal >= 5 AND signal <= 95 

FAIL error := true END FAIL; 

IF NOT error THEN 

normal processing 

END IF; 

Rather than skip the processing the designer might decide to set SIGNAL 

to a nominal value or to an old value. 
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This could be done by 

ASSERT (SIGNAL .GE. 5 .AND. SIGNAL .LE. 95) 

*     FAIL (ERROR FIX) 

normal processing 

/ 

BLOCK (ERROR FIX) 

SIGNAL = NOM1NL 

END BLOCK 

While the same results could be obtained by a series of IF tests in 

either language, the advantages of using the assertions are: 

1. The conditions under which the code that follows is expected 

to operate are explicitly stated 

2. The methods of handling errors due to input data are separated 

from the rest of the code 

3. The assertions used in fault detection are the ones used in 

a formal verification 

i 
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6    FORMAL VERIFICATION 

A major part of the work is the development of a capability for the 

verification of FORTRAN and PASCAL.  This has resulted in the design and 

implementation of a verification condition generator, a slmpllfier, and 

an Interactive slmpllfier which are able to verify single modules. 

6.1  VERIFICATION TOOLS 

6.1.1 Design and Implementation of VCG 

The verification condition generator produces verification condi- 

tions for programs with assertions written in FORTRAN, IFTRAN, or the 

subset of PASCAL limited to FORTRAN-llke data types. 

O 

The verification condition generator uses assertions which have 

been inserted into the source code to generate verification conditions 

in the form A ->■ B , where A is the initial assertion on a program path 

conjuncted with the predicates encountered along the path and B is the 

assertion at the end of the path.  All variables in the verification con- 

dition are represented in terms of their symbolic value at the start of 

the path.  The required substitutions are made by symbolically executing 

the final assertion and any predicates backwards to the Initial assertion. 

Three keywords are used to state assertions in the present system. 

These are INITIAL, FINAL, and ASSERT.  The INITIAL assertion is a state- 

ment of the conditions which are true when the module is entered.  The 

FINAL assertion is a statement of the conditions that are true on exit 

from the module.  The ASSERT statement is normally used to express loop \ 

invariants, but may be used anywhere in the body of the module to express 

a condition that is true at. that point. The syntax of the assertions is 

discussed in Sec. 3.  First order predicate calculus statements about 

program variables may be expressed in the assertions. 

Program structure Is used to determine the set of verification 

conditions to generate.  A well-structured, single-entry, single-exit 
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program has a readily Identified set of verification conditions.  There 

is a verification condition for each verification path in the program. 

Verification paths begin at the program entry point and loop entry points, 

and end at the program exit point and loop exit points.  Each logically 

possible path between program entry, loop entry, loop exit, and program 

exit corresponds to a verification path.  Each verification path must 

begin and end with an INITIAL, FINAL, or ASSERT statement. 

Specification of verification conditions is presently handled by 

stating the set of DD-paths which lie between assertions.  For example, 

a verification condition is generated by giving the static analysis 

system a command of the form: 

VCG. PATH - 2,1,3. 

"VCG" commands the system to invoke the verification condition 

generator.  PATH ■ 2,1,3 is an example of the present method of specify- 

ing the path over which the condition is to be generated.  The general 

form of the command is 

VCG,PATH * <no. of path8>{,<dd path number>} 

In the example, two decision-to-decision (dd) paths are specified: path 

number 1 and path number 3. The verification condition generator will 

take the first assertion on path 1, the last assertion on path 3, and the 

intervening body of code to generate a verification condition. 

The program SIMP is a very simple IFTRAN program which contains 

three DD-paths. 

PROGRAM SIMP (INPUT, OUTPUT) 

ENTRY (.TRUE.) 

A = 5.0 

B - 0.0 

WHILE (A .GE. 0.0) 

ASSERT (A .GE. 0.0 .AND. B .LE. A**(-2)) 

B - A**(-2) ) 
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( 
END WHILE 

EXIT (B ,LE. l.OE-U) 

STOP 

END 

Path 1 covers the program entry statement up to the WHILE statement, 

Path 2 covers the "true" part of the WHILE statement and the statements 

in the loop.  Path 3 covers the "false" part of the WHILE statement and 

the statements following the END WHILE. 

1 

O 

o 

The verification condition generator, when given the command 

VCG, PATH = 2,1.3 will take the assertion on path 1, ENTRY (.TRUE.); the 

statements A = 5.0 and B = 0.0; the "false" of WHILE (A .GE. 0.0); and 

the assertion on path 3, EXIT (B .LE. 1.0E-14), to generate the verifica- 

tion condition: 

(.TRUE.) A (5.0 .LE. 0.0) ■+ (0.0 .LE. l.OE-14) 

In this simple example, the premise is false and hence the resulting 

condition is true. When the premise is false, the implication is that the 

selected path combination is impossible. 

Although this method of selecting verification conditions to be 

generated provides flexibility for symbolic execution, a more automatic 

selection mechanism which relates to the assertions is under development. 

Other approaches to verification condition generation are possible. 

Most existing program proving systems generate one complicated verifica- 

tion condition cor  an entire program. The advantages of associating 

verification conditions with verification paths are: 

1. Verification conditions are smaller and more susceptible to 

automatic simplification 

2. Verification conditions are more readable, allowing more 

intelligent interactive simplification 
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The size of verification conditions is iincjependent of program 

size 

Incorrect assertions or code are easily found since each 

verification condition is associated with a single verifi- 

cation path. 

A potential disadvantage is the large number of verification condi- 

tions which may be required for some programs.  This has not been a 

problem yet. 

Several automatically produced reports are related to verification 

condition generation.  Figure 6.1 shows the DD-path definitions report 

for program SIMPLE.  This report provides the DD-path numbers used in 

specifying verification paths.  It is produced with the commands: 

MODULE = (SIMPLE). 

PRINT, DDPATHS. 

There is one verification path around the loop in SIMPLE, 

with the command 

VCG.PATH - 2,2,2. 

it is specified 

CI.-P.ITH OCffMlUtM PhOWRA^   SlfPUt 

■' 

i 
* 
t> 

« ( 1) 
7    ( 11 
f 
« 

19 
11 

PHüGKA«   slf'PU 

IMTIAL   (   .IKUI..    ) 
A   »   5.0 
i;   -   u.O 
»MILL    I    J    .bC.   0    ) 

.     A^SLHI   t   A   .GL.   U.O   .AND.   B   .LC   A   ••   (   -  it   I   ) 

.     b   i   A   ••   I   -   i   ) 

Fi"*k ( t .LL. .uruouuooououooi i 
SKP 

•• ÜCHATH   1 IS pROCtOuRt ENVRT 

•• DOPATH   2 1$ LOUP «GAIN 
•• CCPATH   S IS LOUP EsCAPr 

Figure 6.1. DD-Path Definitions for Module SIMPLE 

> 
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Figure 6.2 is produced as a result of this command. It identifies the 

statements in the specified verification path. This verification path 

corresponds to going around the loop in SIMPLE once. Figure 6.3 is also 

produced as a result of the VCG.PATH command.  It is the verification 

condition associated with the verification path in Fig. 6.2.  Each term 

in the verification condition is directly related to the source line 

number from which it was derived. 

LINE 

b 
6 ( 1) 
7 ( 1) 
e 
5 
6 ( 1) 

PATH SüLHCL ItXT 

MMiLE ( A tUL. U ) 
.  ASSt-riT ( A .GL. O.U «AND« B «LC* A «* ( . 2 ) ) 
.  B s A ♦• < - 2 > 
ENuwHILE 
nHiU£ ( A .Gt. ü ) 
.  ASSUhl < A .GL. 0.Ü .ANu* Ü «l.L. A ♦♦ ( - 2 ) ' 

( 

Figure 6.2. Verification Path Report for Module SIMPLE 

LINE   VtRIFICAjlUiN CCNcIlIÜN 

5 A .Gt. 0 

AND 

6 A .GE. 0.0 .Ai«0. d .Li« A ** - 2 

AND 

5 A .GC. Ü 

. ••••• IMPLIES    

6 A .(,£. 0.0 .AND. A ♦• - 2 .LE. A «« 

Flgu-« 6.3. Verification Condition Report for Module SIMPLE 
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All variables in the verification condition are represented in 

terms of their symbolic value at the start of the verification path.  The 

verification condition is constructed as the verification path is symbol- 

ically executed in reverse order.  Each statement type encountered when 

traversing the verification path in reverse order affects the verification 

condition being generated. The rules for FORTRAN are: 

• When a decision statement or assertion is encountered, the 

appropriate condition is added as an .AND. term to the 

current formula (the final assertion is added as the conse- 

quence of the .IMP.). 

,    An assignment statement of the form x = y causes all 

instances of the term x to be replaced with y  in the 

current formula. 

• An iteration control statement, such as the statement at the 

end of a FORTRAN DO-loop, causes all instances of the itera- 

tion index to be replaced with the incremented value.  This 

is an assignment statement of the form: <index> =  <index> 

+ < increments 

• An iteration initiation statement, such as a FORTRAN D0- 

statement, causes replacement of instances of the <index> 

with its <initial-value>. 

• A statement label assignment results in replacement of 

instances of the label-name with the actual label. 

Planned extensions to the verification condition generator will allow 

subroutine, function, and READ statements to be symbolically executed 

when the corresponding subroutine, function, or I/O unit has been defined 

using INITIAL, ASSERT, and FINAL statements. 

6.1.2 Simpllfier Design and Implementation 

The verification condition simpllfier consists of two separate 

parts: a standard simpllfier and a user supplied simpllfier.  The 
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Standard simplifier applies a small  set  of  arithmetic,   logical,   and 

relational  simplifications  in an  attempt  to reduce the verification 

condition to "true."    The result  of  this  attempt  is presented  to  the 

user who  can then supply additional  simplification rules,  which  are 

peculiar to  the problem at hand.     Once a new rule has been applied,   the 

modified result  is sent  through  the simplifier again and the  new result 

is  presented  to  the user.     In  this manner,   the user can verify  the pro- 

grams that the standard simplifier  cannot. 

6.1.2.1    Standard  Simplification 

The  simplifier  first puts  the verification condition  into  a tree 

data  structure.     The root of  the  tree contains the  implies operation.     In 

Fig.   6.4,   the tree for the expression 

A>2-»-A>2vA=2 

O 

is  shown as  it  is seen by the simplifier.     A small set of tree operations 

were defined so that  it was not  difficult  in IFTRAN to build  trees,  walk 

trees,  delete nodes, move nodes,   or print  trees in the form shown in  the 

figure. 

O 

Once the tree has been formed, a lexical level is assigned to each 

leaf so that a lexical ordering of the nodes can be performed.  This 

allows the simplifier to recognize that the expressions 

A + B + C 

A + C + ß 

B + A + C 

B + C + A 

C + A + B 

C + B + A 

are all the same.    The lexical ordering would result in the preceding 

expression being replaced by 

A + B + C 
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P'Cttmi  iF  l.L,i,,iti,J   T(Ct 

IVtIMt,     X 
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C»|«lN«b t«PHi.iSICN 

Figure 6.4.  Sitnplifler Tree 

Constants have the lowest lexical order so any one of the expressions 

A •+• 1 + B 

1 + A + B 

B + 1 + A 

B + A + 1 

1 + B + A 

A + B + 1 

would be replaced by 

1 + A + B 

Lexical ordering is part of the normalization process which takes 

place before the actual simplification takes place. Normalization is 

divided into four parts: 

1. Products normalization 

2. Conjunctive normalization 
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3. Relation normalization 

4. Lexical normalization 

Products normalization places expressions In a sum of products form. 

That Is If the expression is 

.\ * (B - C) 

It will be normalized to 

A * B - A * C 

( ' 

Products normalization also moves negations inwards to the indivi- 

dual terms that are being operated on.  Double negations are removed. 

Some examples are: 

Original 

A - (A + B) 

A - (-A + B) 

-(-(A)) 

Normalized 

A - A + B 

A + A + B 

A 

Conjunctive normalization is similar to products normalization. 

The logical expressions are placed in conjunctive normal form on each 

side of the implies. 

Original 

(A A B) v c 

Normalized 

(A v C) A (B v C) 

(A A B) v C -► (A A D) v c    (A v C) A (B v C) ^ (A v C) A (D v C) 

Conjunctive normalization Is not applied across the implies because 

it is expected that human interaction will operate better when the veri- 

fication condition simplifications are recognizable, when the clauses 

remain tied to the code and the assertions, and when the assertion on the 

right hand side of the implies is kept as a separate set of clauses. Thisi 
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Is considered particularly important when a user attempts to generate a 

loop invariant from the verification condition as described in Sec. 6.1.3. 

Just as products normalization brings in the negation operation 

next to individual terms, conjunctive normalization brings in the NOT 

operation next to individual terms.  Double NOTs are removed. 

Original 

Ilk 

1(A v B) 

1(A A IB) 

Normalized 

A 

1A A IB 

1 A v B 

Relational operators, the divide operator, and the exponential 

operator pose special problems.  This simplifier leaves the division 

operator and the exponential operator as they appear in the original 

expression.  Normalization across the relational operators takes place 

so that the normal form is 

•«variable expression> <relatlon> <constant> 

Examples are: 

Original 

A > B 

3 < C 

A + 2 > D + 7 

Normalized 

A - B > 0 

C < 3 

A - D > 7 - 2 

After a verification condition has been pWced in normal form, it 

is simplified. The simplifier consists of five parts which are applied 

sequentially to each subtree during a post order walk of the tree. The 

five parts are: 

1. Constant simplification 

2. Common term simplification 

) 

128 



3. Logical simplification 

4. Cancellation 

5. Relational simplification 

O 

It is assumed that the normalization process will have brought 

constant terms together.  The constant simplification process will then 

evaluate arithmetic rnd logical expressions which contain constants. 

Special rules for 0 and 1 are incorporated in  the constant simplification 

process.  Constant expressions which are simplified may be real, integer, 

or logical data types.  Examples of constant simplification are: 

Original Simplified 

A > 3 + 6 A > 9 

.TRUE. +  INPUT3 > 0 INPUT3 > 0 

.FALSE. ■♦ INPUT2 < 0 .TRUE. 

B < 6 ■> .FALSE. B ä 6 

1 * RANGE + 6 RANGE + 6 

0/TIME 0 

0 + DIST DIST 

1 ** FINALV 1 

.TRUE, A (C > 6) C > 6 

1 + 2 3 

6.0 + 3.0 9.0 

2 < 7 .TRUE. 

.TRUE, v (F = MA) .TRUE. 

o 
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Common term simplification searches arithmetic expressions for equal 

terms which can be combined into a similar expression. 

Original 

A - A + B 

A * B - A * B 

A * B + A * B 

Simplified 

B 

0 

2 * A * B 

Logical  simplification does  the same as  common term simplification 

for the  logical  operators. 

Simplified 

(A + B > 5) 

(C < E) 

Original 

(A + B > 5) A (A + B > 5) 

(C < E) v (C < E) 

Cancellation of like terms across the implies is a separate part of 

the simplification process.  If a clause on the right part of the implies 

is the same as a clause on the left hand side, the right hand clause is 

replaced by .TRUE..  The goal of the simplification process is to delete 

as many clauses as possible so that eventually the verification condition 

appears as: 

C1   A   C2   A AC--*  .TRUE. 

which is simplified to   .TRUE..     Examples of cancellation are: 

Original Expression 

(A >  5)   A  SORTED A  (L < N) -> SORTED 

Simplified Expression 

.TRUE. 

' 
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: Original Expression 

(RANGE > 0) A (ELEVATION > 50) -> (RANGE > 0) A (AZIMUTH > 3) 

Simplified Expression 

(RANGE > 0) A (ELEVATION > 50) ->■ (AZIMUTH > 3) 

O 

o 

Relational  simplification takes  conjuncted  relations which  involve 

equivalent  terms  and  replaces  them with the stronger  relation. 

Original Simplified 

(RANGE  >  3)   A   (RANGE   >   5) (RANGE  >  5) 

(TIME St 6)   A   (TIME  >  6) (TIME  >  6) 

(DIST  >  3)   A   (DIST  <   2) .FALSE. 

(SPEED >  0)   v   (SPEED  <  0) .TRUE. 

(VEL >  2)   A   (VEL  <  2) (VEL =  2) 

If as a result of simplification a variable is equal  to a constant, 

that  constant  replaces  the variable in other clauses and  the result  is 

resimplifled 

Original 

(B >   0)  A   (B <  0) ■>  1  = A**B 

Simplified 

(B =  0) ->  1 = A**B 

Resimplified 

.TRUE. 

6.1.2.2    User-Supplied Simplifications 

Although the standard  simplifier contains many rules,   it  cannot 

automatically verify all  the verification conditions from many programs. 
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Rather than change the simpllfier or develop a complete theorem prover, 

the capability for adding rules to the simplification process was provided. 

Two forms of rule? are available.  The first uses simple, text re- 

placement and the second uses pattern matching.  Under text replacement, 

if a verification condition contained an expression of the form 

B > 0 

and the user desired to change this to 

B > 0 v B - 0 

the command sequence would be 

VCG,REPLACE. 

B .GE. 0 = B .GT. 0 .OR. B .EQ. 0 

*END. 

for IFTRAN OR 

VCG,REPLACE. 

B>=0 = B>0ORB 

*END. 

= 0 

for V-PASCAL. 

Such a command will cause the verification condition to be searched 

for the text string B a 0 which will be replaced with the text string 

B > 0 v B » 0. Then the standard simpllfier will be reinvoked to see if 

the modified verification can be reduced to .TRUE, by the standard 

simpllfier. 

The replacement operation Is implemented by the formation of a tree 

with the replacement equality operator as the root.  The verification 

condition is searched for subtrees which are equal to the left subtree of 

the replacement tree.  If found the right subtree is used for the replace- 

ments. 

) 

132 



The more general method is to use pattern replacement rather than 

text strings which require exact matches. Pattern replacements are done 

with special pattern variables: 

PX1,PX2,...,PX10. 

0 

An example of a pattern variable rule is: 

PX1 > PX2 A PX2 > PX3 = PX1 > PX3 

If this were applied to a verification condition which was 

(RANGE > MINRANGE) A (MINRANGE > INPUT2) +  (RANGE > INPUT2) 

PX1 would match RANGE 

PX2 would match MINRANGE 

PX3 would match INPUT2 

so the replacement would result in 

RANGE > INPUT2 ->• RANGE > INPUT2 

which the simplifier would recognize as being .TRUE.. 

Pattern replacement rules are entered in the same manner as text 

replacement rules. 

The preceding rule would be entered as 

VCG,REPLACE. 

PX1 .GE. PX2 .AND. PX2 .GT. PX3 = PX1 .GT. PX3 

*END. 

O 

for IFTRAN, or as 

VCG,REPLACE. 

PX1 >= PX2 AND PX2 > PX3 - PX1 > PX3 

*END. 

for V-PASCAL. 
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By the combination of using the standard simplifier and the user 

supplied simplifier, several small programs have been formally verified 

as described in Sec. 6.3.  In the process of verifying the programs, it 

was discovered that once a new rule was defined to verify part of a pro- 

gram, it was used repeatedly in the verification of that program.  In 

order to save the effort of re-entering rules, the AXIOM command was 

implemented.  Instead of giving the command sequence 

VCG.REfLACF', 

<rule> 

*END. 

one states 

VCG.AXiOM. 

<rule> 

*END. 

The rule will be assigned an axiom number and saved on a library of rules. 

A rule which does not result in any replacements will not be saved.  Once 

on the library, the user need only refer to the axiom number as for 

example, 

VCG.AXIOM,1. 

VCG,AXI0M,3. 

which would cause axiom 1 to be applied and then axiom 3. 

6.1.3 Adding Assertions Using Verification Conditions 
22 

One of the methods proposed by Webgreit   to synthesize loop invari- 

ants uses the FINAL assertion and the exit condition from the loop.  The 

trail loop invariant which is formed is then modified using a set of heur- 

istics until it satisfies the conditions of a loop invariant. The Soft- 

ware Quality Laboratory provides a means whereby trail assertions may be 

placed in a program. The verification conditions which are generated from 

the trail assertions may be examined to see how to alter the assertion so 

that the verification conditions are valid. 

0 
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By way of example, the text of the DIV subroutine which corresponds 

to Wegbreit's first example Is used as shown in Fig. 6.5. Assuming that 

the INITIAL and FINAL assertions are provided, the problem is to find the 

loop Invariant which is placed in an ASSERT statement. The ASSERT state- 

ment is expected to satisfy the following verification conditions for tht 

loop: 

1. Loop entry 

INITIAL A (loop entry)' ■+ ASSERT' 

2. Around the loop 

ASSERT A (loop continue)' -► ASSERT' 

3. Loop exit 

ASSERT A  (loop exit)'  * FINAL' 

where 

loop entry la the condition or predicate that causes entry 

to the loop 

loop continue is the condition under which control remains 

in the loop 

loop exit is the condition that causes transfer out of the 

loop 

and INITIAL, ASSERT, and FINAL refer to the logical expressions 

in the assertions. 

The primed terms refer to the logical expressions as they appear in 

terms of the variables that exist at the start of the loop. 

For the example shown, 

INITIAL -A^OABaO 

FINAL -A-Q*B+RAO£RAR<B 

loop entry ■ loop continue = R i B 

loop exit = R < B 
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I i Wegbrtlt states that the standard means for generating a loop invariant 

is to start with the loop exit veriiication condition and use a trail 

verification condition 

(loop exit)' -► FINAL' 

In the Software Quality Laboratory, a trail loop invariant can be 

generated by setting the loop invariant to .TRUE, as shown in the text of 

the program.  A verification condition is then generated for the path 

around the loop. The resulting verification condition is then placed in 

disjunctive form by using the REPLACE command with the rule 

PX1 .IMP. PX2 = .NOT. PX1 .OR. PX2 

to remove the implies.  The result of this operation is a trail loop 

invariant which is shown below the text of the program. 

\...' 

Now the three verification conditions are regenerated using the 

trail loop invariant.  It is seen that the second verification condition 

cannot be reduced to true (see Fig. 6.6).  One of the heuristics is to 

strengthen the assertion by changing the disjunction to a conjunction 

which will allow the second verification condition to be valid. When 

this is done, all the paths in the program can be verified using the 

standard simplifier as shown in the second verified program in Appendix D. 

O 

6.2   INTERACTIVE ASSISTANCE 

An interactive interface to the Software Quality Laboratory has been 

implemented to aid the user in the development of assertions and improve 

the performance of the simplifier. Through the interface, the Software 

Quality Laboratory us^r can enter commands and receive output through the 
20 

Anagraph.   A functional description of the relationship between the user 

and the Software Quality Laboratory is shown in Fig. 6.7. 

Through the Anagraph terminal, the user can request verification 

conditions, provide trial assertions, specify additional simplification 
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1 

SIMPLIFICATION RULES 

INTERACTIVE 
SIMPLIFIER 

SIMPLIFIED VC. 
PROOF OF SIMPLIFICATION 
RULE 

t USE PROGRAM STRUCTURE TO SIMPLIFY PROOF STEPS 

• RELATE VERIFICATION CONDITIONS TO ORIGINAL PROGRAM 

Figure 6.7.  Interactive Program Proving 

rules, and request the symbo. ic execution of expressions.  In response, 

the Software Quality Laboratory generates verification conditions from 

assertions In the source code or assertions entered from the Anagraph, 

simplifies these verification conditions, symbolically executes arbitrary 

expressions over specified program paths, validates simplification rules, 

and applies them to verification conditions. 

o 

The reason for implementing the interactive simplification capability 

is to overcome a problem recognized by Deutsch: 

There are two respects in which PIVOT has failed to attain 
the goals set for it by the author.  One is stability. 
Even though PIVOT is restricted to a fairly limited domain, 
each new test case has required adding simplification rules 
or extending the logic of PIVOT in some way. 

It is impractical to extend the capability of a simplifier to prove every 

possible program by including every possible simplification rule.  It is 

more feasible to allow a user to add a rule that applies only to a single 

program. 



The reason for giving the user the capability to interactively 

specify assertions and gene-ate verification conditions Is to assist the 

synthesis of loop Invariants.  Until loop invariants can be generated 

automatically, the user will need to supply these assertions.  Since the 

specification of loop invariants is an iterative process of trial and 

error, the user can request that a loop invariant be tested by symbolic 

execution through the loop. 

The interactive interface was designed and built at GRC Santa Barbara 

using a program which simulated the action of the Anagraph. The Anagraph 

simulation runs in batch mode on the 7600 and produces printed output 

which is the same as would be seen on the Anagraph screen.  The use of 

the simulation greatly reduced the amount of time required to  develop the 

interactive interface and allowed all but final testing to be done in 

batch mode from Santa Barbara. 

When the verification condition generator and the simplifier of the 

Software Quality Laboratory are used interactively from the Anagraph 

terminal, commands are selected by the trackball and textual information 

is entered through the keyboard.  Some commands may be entered by using 

the trackball alone while others (PATH, REPLACE, EXPRESSION, AND RXVP) 

require the user to enter a text string through the keyboard.  The inter- 

active interface synthesizes the command corresponding to the command 

selected and places it in a command buffer which is displayed to the user 

when the ENTER button is depressed.  The actual processing associated with 

the command takes place when the command GO is selected by the user. 

Textual output generated by a Software Quality Laboratory processing 

module is displayed on the Anagraph screen.  As each page of output is 

ditsplayed, the user can direct the interactive interface to display the 

next page of output, or to cease displaying the output and return to a 

mode where commands can be entered. 

The figures in this section were derived from the Anagraph 

simulator. 

) 
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The basic display is a menu of commands from which the user selects 

a command by placing the trackball position cursor over the command on 

the screen and pressing the trackball ENTER key.  The command menu is 

shown in Fig. 6.8.  Commands selected are echoed under the heading 

SELECTED COMMANDS.  The seven -commands that can be entered are described 

in the following paragraphs. 

o 

To select the SIMPLIFY command, the user places the trackball 

cursor over SIMPLIFY on the screen, and presses the trackball ENTER key. 

The command VCG,SIMPLIFY is constructed and echoed on the right half of 

the screen, under the heading SELECTED COMMANDS as shown in Fig. 6.9. 

When the user selects the PATH command using the trackball, the 

interactive interface responds by printing the prompt ENTER PATH on the 

screen below the command menu.  The user then enters the number of paths 

and path list (such as 2,1,2) through the Anagraph keyboard. At this 

point the screen appears as in Fig. 6.10.  The command VCG,PATH = number 

of paths, path list Is then constructed and entered in the command buffer 

by the interactive Interface and echoed on the right half of the screen. 

O 

The PATH command causes the selection of a report showing the "path 

to verify," as shown in Fig, 6.11. This report replaces the menu display 

on the Anagraph screen. 

When the user selects the REPLACE command using the trackball, the 

interactive interface responds by printing the prompt ENTER REPLACEMENT 

STRING on the screen below the command menu. The user then enters the 

replacement string through the keyboard. The interactive interface then 

constructs the commands: 

VCG,REPLACE 

replacement string 

*END. 
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enters them in the command buffer, and echoes them on the right half of 

the screen. 

The REPLACE command causes the generation of a report showing the 

result of applying the simplification rule to the verification condition 

being simplified.  This report replaces the menu display on the Anagraph 

screen. 

When the user selects the EXPRESSION command, using the trackball, 

the interactive Interface responds by printing the prompt ENTER EXPRESSION 

on the screen below the command menu.  The user then enters the expression 

through the keyboard.  The interactive interface then constructs the 

commands 

VCG,EXPRESSION 

expression 

*END. 

enters them in the command buffer, and echoes them on the right half of 

the screen. 

The RXVP command is used to enter commands to the Software Quality 

Laboratory which do not appear on the command menu.  When the user selects 

it, using the trackball, the interactive interface responds by printing 

the prompt ENTER COMMAND on the screen belcw the command menu.  The user 

then enters the command through the keyboard. The interactive interface 

enters the command into the command buffer and echoes it on the right half 

of the screen.  Any valid Software Quality Laboratory command may be 

entered in this fashion. 

The reports corresponding to the entered command are produced on 

the Anagraph screen. 

) 
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The END command is used to close all files, print a final report, 

and terminate the execution of the Software Quality Laboratory.  When the 

user selects it, using the trackball, the interactive interface places 

the command in the command buffer and echoes it on the right half of the 

screen. 

The END command causes the generation of a wrapup report, which 

lists the tnjdules on the library and their attributes, along with statis- 

tics on library creation and access. 

The GO command causes the interactive interface to transfer control 

to the Software Quality Laboratory's command-processing module.  All com- 

mands that have been previously selected (and echoed on the screen under 

SELECTED COMMANDS) will then be executed, and the first page of the re- 

sulting reports will be displayed on the Anagraph screen. 

O 
As each screenful of Quality Laboratory output is displayed on the 

Anagraph, the user is given the option of viewing the next page of output 

or returning to the command menu. These options are presented to the 

user by the words NEXT PAGE and MENU at the bottom of the screen. To 

select the next page of output or return to the command menu, the user 

places the trackball cursor over the appropriate command and presses the 

trackball ENTER key.  If NEXT PAGE is selected and there is no more out- 

put, the command menu is displayed. 

6.3  VERIFIED PROGRAMS 

The formal verification process has evolved from the generation of 

verification conditions which required manual simplification to a process 

which requires human interaction. 

o 

Included in Appendix D are listings of programs for which verifi- 

cation conditions have been generated. Also included in a few cases are 

the simplified verification conditions and the reduction via the user- 

supplied simplification. 

mmmiemmfm 



These Initial programs were chosen so that comparisons could be 

made between the verification conditions that were generated by the 

Software Quality Laboratory and similar verification conditions generated 
5-9 

by others.    It is recognized that others have attempted to have their 

conditions automatically reduced to .TRUE., whereas our approach attempts 

to present them to a user in readable form so that the user can modify 

them.  This may be why the output shown in the appendix is more readable. 

The first nine programs are from King.  They were also used by 

Deutsch and a few by Elspas.  The tenth program has been used by Elspas. 

The eleventh program has been used by several others, 

program is new. 

6,9 
The twelfth 

Program TIMES computes an output X = A * B by adding the input 

A to a local variable SUM, B times. The local variable Y is 

used as a counter which is initially set to B and then decremented 

to zero. 

Program DIV computes two outputs: Q, which is the quotient of the 

integer division of A by B, and R, which is the remainder of that 

division. A and B are inputs. 

Program EXPON computes an output Z = A ^* B by multiplying the 

partial result times Itself using the binary value of the input B 

as found by the MOD function.  The local variable X is used as the 

partial result and Y is used to find the binary representation for 

B. 

Program PRIME computes whether the input variable A is a prime 

number and sets the output J to a "0" if A is prime of a "1" if 

A is not prime.  Testing is done by taking the remainder of A 

divided by 2 to A - 1 using the local counter I. 

Program ZERO sets an array A of length N to zero. A is treated 

as input and output. N is input.  The local variable I is used 

as a counter. 

1 
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Program MAXI searches an array A of length N for the largest element. 

This element with the largest value In the array is then swapped 

with the element A(N).  A is treated as input and output.  N is input, 

The local variable I is used as a counter and the local variable 

TEMP is used as temporary storage during the swap. 

0 

o 

7. Program S0RT1 performs a sort of an array A of length N.  Elements 

are exchanged using the local variable TEMP.  1 is a local variable 

used as a counter.  J is a local variable which when set to 1 indi- 

cates a swap was made.  J is 0 when sorting is no longer necessary. 

A is used as input and output.  N is used as input. 

8. Program MULT2 is a more complex version of the TIMES program which 

performs multiplication of A times B whether A or B is negative. 

The result is placed in ANS which is an output variable.  A and B 

are input variables.  TEMPA, TEMPB and TANS are used as temporary 

variables. 

9. Program S0RT2 also performs a sort of the array A of length N. 

The sort, is accomplished by finding the largest element in the 

rest of atray at each Iteration. Local variables I, J and K are 

used as counters.  Local variables M, N and L are used as assertion 

counters.  Local variable TEMP is used for swapping.  A is used as 

input and output. N is used as input. 

10. Program BINSCH performs a binary search of an array ARRAY of length 

LENGTH for the value in X.  The element index where X is located 

is placed in the output variable LOOKUP.  If not found the output 

variable ERROR is set to .TRUE., otherwise it is set to .FALSE.. 

ARRAY, X, and LENGTH are treated as input variables.  I is a local 

variable used as a counter. M and N are local variables used 

to delimit the area to be searched each time.  SORTED is a function 

of an assertion on the array, used to provide a more readable 

version of the assumption that the array is SORTED on input. 

149 
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24 
11. Program FIND is an efficient sorting algorithm published by Hoare. 

In this version A is the array of length NN which is sorted about 

element A(F).  A is used as input and output.  NN and F are used 

as input.  I, J, M, N are used as counters in the algorithm.  P and 

Q are used as counters in the assertions.  PSORT is an assertion 

function used to provide a more readable version of the assertion 

that the array is partially sorted. 

12. Program SQX is a square root algorithm using Newton's method to 

find an approximation to the square root of the floating point input 

variable X .  The program is a function where Y  is used as a 

local variable to represent the approximation. 

1 
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7    SOFTWARE DEVELOPMENT SYSTEM QUALITY ASSESSMENT 

In this section we shall examine the role of high-level languages 

in the production of reliable BMD software.  Our approach is to use a 

language developed for multi-tasking software systems, Concurrent 
25 

PASCAL,   in reprogramming an existing BMD software simulation.  The BMD 

simulation, GSIM, has been described in previous reports.   As each 

algorithm from GSIM is implemented in Concurrent PASCAL, assertions will 

be derived which express the correct behavior of the algorithm.  From 

these assertions we will derive verification conditions, simplify them, 

and prove them correct. 

7.1  THE APPLICABILITY OF CONCURRENT PASCAL TO BMD SOFTWARE 

We have found GSIM algorithms involving concurrent operations to be 

easily constructed in Concurrent PASCAL.  However, we have also discovered 

certain task sequencing requirements common to BMD software which are not 

expressible in Concurrent PASCAL.  Before we discuss these, we will 

briefly describe the Concurrent PASCAL Monitor and its use in Implementing 

an example algorithm from GSIM. 

The language structure for expressing concurrent operations in 
2fi 

Concurrent PASCAL is the monitor.   A monitor is a single programming 

unit consisting of a shared data structure, local variables, procedures 

and/or functions which operate on the shared data structure. Delay and 

Continue operations and initialization statements. The monitor which 

controls access to the search return data set of GSIM is shown in 

Fig. 7.1. The monitor schedules exclusive access to the shared data 

structure when a call is made upon one of the monitor procedures by a 

concurrently executing process (task). This scheduling is done by the 

virtual machine or operating system routine which implements the monitor. 

Access to the monitor is granted on a first come-first served basis. The 

procedures which are defined within the monitor are local to the monitor 

and have access only to data which is local to the monitor. Variables 

which are local to the monitor can only be manipulated by calling the 

0 
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SnnSMflN > MONITOR   (  LT^IT  I   nttGER )   I 

V*P  RTK'O • ABBAY 10,,LIMIT-11 OF StABCHRtTUKN | 
SENOfc»» RECEIVtR I QUEUE I 
HEAR, TAIL, LENGTH | iNTKGtf I 

PRrCERURF EK'TRY PUT ( RETURN | SEAHCHHETUR^ ) t 
BEGIN 

IF LENGTH s Ll^IT THEN DELAY (SfcNDER) I 
HTNO[TATLl :« RITUHH I 
TAIL t» (TAIL ♦ 1) MOD LI^IT I 
LENGTH is LENGTH ♦ 1 | 
CONTINUE (RECEIVE») | 

FNR (» PUT *) I 

pRrCEDUBF ENTRY GET (VAR RETURN : SEARCHWtTURN) | 
BEGIN 

IF LFMGTH s 0 THEN DELAY (RECEIVER) | 
RETURN is HTNO [HEA^J | 
HEAD i» (HEAD ♦ 1) ^QO LIMIT I 
LENGTH I* LENGTH - I t 
CHNTIMIE (Sfc^OEH) | 

END (» GET •) | 

BEGIN (* INITIALIZE •) 
HEAD is 0 | 
TAR IB 0 | 
LENGTH   is   0 

END   (•  SRDS  HQMTOR   *)   » 

Figure 7.1.    Monitor for Search Return Data Set 

monitor procedures.    When a process or task which has been given access 

to the monitor executes a Delay operation,  the task is suspended and 

exclusive access to the monitor can be given to another task.     Tasks 

which have been suspended are reactivated on a first come-first servad 

basis when a Continue operation is performed.    In summary,  monitors 

implement mutual exclusion of concurrent tasks when they operate on a 

shared data structure by allowing only sequential access  to the data 

structure.    They prevent tasks  from performing incorrect operations on 

the shared data structure by requiring explicit definitions of the 

allowed operations,  and synchronize cooperating tasks through Delay and 

Continue operations. 

) 
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We will now give an example of a monitor which controls the access 

to the data structure shared by concurrent tasks. Figure 7.2 shows how 

a verify pulse is generated in response to a search return in GS1M. 

Radar returns are placed in the radar returns buffer (RRB) by the channel 

controller task. The assimilate radar returns task then classifies the 

returns according to type and places all search returns in the search 

returns data set (SRDS). The generate verify pulse task generates radar 

requests for verify pulses from the search returns and places these 

requests in the radar activities queue (RAQ). The generate radar orders 

task then generates radar orders from the radar requests.  Notice that 

the SRDS is accessed by both the assimilate radar returns task and the 

generate verify pulse. This is the data set we will Implement with a 

monitor. 

( 

Figures  7.1,  7.3 and  7.4  show the Concurrent PASCAL  implementation 

of  the search  return data set  monitor,   the assimilate radar  returns  pro- 

cess,  and the  generate verify pulse process,  respectively.     The assimilate 

radar returns process is a  cyclic  task which  gets radar returns  from the 

RRB,  classifies  them as  to  type  and in  the case of search  returns,  places 

them in  the SRDS using the monitor call SRDS.PUT.    The generate verify 

returns  task is also a cyclic  task which retrieves search  returns  from 

the  SRDS using the monitor call  SRDS.GET and  creates radar  requests  for 

the radar activities queue.     The SRDS monitor implements  a queue of  radar 

returns  using an array data structure.     The monitor contains a procedure 

to place entries  in the queue  and another procedure to retrieve entries 

from the  queue. 

It  Is possible  for  the assimilate radar returns process and  the 

generate verify pulse process   to attempt  to access  the SRDS  simultaneously 

since  they are Independent  tasks and we have made no assumption about 

thefr relative speeds.    The monitor prevents  this  from occurring by 

allowing only one of the processes to complete a call to a monitor pro- 

cedure at one time.    Recall  that this mutual exclusion property is 
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Figure 7.2.    Search Return Processing in GSIM 
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implicit in the definition of the monitor.  The monitor also prevents 

either process from attempting to place or retrieve data in storage 

locations beyond the length of the queue.  For example, in the PUT 

procedure, if the queue is full (LENGTH = LIMIT) then the assimilate 

radar returns process is delayed until the generate verify pulse process 

retrieves a search return from the queue.  Similarly, in the GET proce- 

dure, the generate verify pulse process Is delayed when the queue is 

empty (LENGTH ■ 0) and is only allowed to continue after the assimilate 

radar returns process has placed a radar return in the queue.  Therefore, 

we see that the monitor has been successful in solving the problem of 

exclusive access to the search return data set and at the same time has 

synchronized the interaction of the assimilate radar returns process and 

the generate verify pulse process. 

We shall now use GSIM to illustrate a number of problems that 

cannot be solved using the monitor construct.  Figure 7.5 depicts the 

relationships between the tasks and data structures used in the genera- 

tion and processing of radar requests. The generate search pulse, 

generate verify pulse and generate track pulse tasks all place requests 

for the radar in the radar activities queue (RAQ).  The generate radar 

orders task takes these requests from the RAQ and generates a radar 

schedule satisfying these requests which does not exceed the constraints 

of the radar. Unscheduled requests are returned to the RAQ. As will be 

explained in the next section, this relationship is an example of the 

reader's/writer's problem in concurrent processing. A read operation in 

this case removes a request from the queue. There are more writers than 

readers; however, in a BMP software system it would be preferable to let 

the reader have priority over any of the writers.  Suppose we implement 

the RAQ with a monitor and consider the case where two of the three 

writing processes are awaiting access to the RAQ while the third writer 

Is using it.  If the generate radar orders task makes a read request, it 

will have to wait until both write requests have been processed. The 

manner in which exclusive access is granted by the monitor (first come- 
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Figure 7.5.     Radar Activity Processing in GSIM 
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first served) prevents the generate radar orders task from getting 

access to the RAQ immediately after the writer which Is using the queue 

has finished.  However, since radar time is a scarce resource, we may 

not want the generate radar orders task to wait for those tasks which 

are generating radar requests.  Unfortunately, there is no facility In 

the Concurrent PASCAL monitor for implementing this priority 

arrangement. 

As a second example, consider the fact that we allowed the generate 

radar orders task to get radar requests from and put radar requests into 

the RAQ. This is perfectly reasonable in this case.  Now consider the 

search return processing which was depicted in Fig. 7.2.  It would not be 

reasonable in this case to allow the assimilate radar returns process to 

both put and get search returns from the SRDS.  There is nothing in the 

description of a monitor which protects us from this programming error. 

That la, the monitor construct has no mechanism to protect the shared 

data structure from being accessed by a process using an improper 

operation. 

1 

Figure 7.6, which depicts track processing in GSIM Illustrates 

another problem with the monitor construct.  The object track data set 

(OTDS) is the track file for GSIM. The OTDS is shared by the assimilate 

radar returns process which places track records in the OTDS and the 

generate track pulse process which processes these track returns and 

generates track pulses for the radar. These two processes also share 

the temporary object track data set which is a queue of radar returns 

from which the generate track pulse process matches entries in the OTDS. 

The generate track pulse process is allowed to perform three operations 

on the track file: match a track record with a radar return, updata a 

track record, and destroy a track record. However, the monitor imple- 

mentation of the OTDS does not allow us to specify the order in which 

these operations are to take place. If, due to a programming error in 

the generate track pulse process, a destroy operation were to precede a 
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Figure 7.6.  Track Processing In GSIM 

match operation, the wrong track record could be destroyed.  Although 

there are ways in which the monitor procedures may be programmed to check 

for an invalid order of operations, there is no way to state these 

constraints explicitly in the monitor description. 

7.2  CLASSES OF CONCURRENCY 

In this section we shall identify several classes of concurrency 

problems, relate them to problems that hava been studied previously and 

identify the types of concurrency which occur in GSIM. 

By studying the types of concurrent processing problems discussed 
27-32 

in the computer science literature.     we can abstract at least four 

dimensions along which to classify these problems.  Figure 7.7 shows 

these dimensions.  From the first two dimensions, the number of processes 

which are allowed to access the data structure simultaneously and the 

number of shared data structures which each process requires, we can 

) 
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Identify four problems in concurren': processing.  These are summarized 

in Fig. 7.8.  In the case where only one user is allowed exclusive 

access to a single shared data structure, we have the mutual exclusion 

problem. This problem is typically present in tasks with producer/consumer 

relationships.  If more than one process can be given access to a shared 

data structure at a time, we have the problem of mutual exclusion between 

classes of processes.  Problems of this type usually occur when processes 

can be classified into those which read from a data base and those which 

write into a data base.  If a single process requires more than one 

shared data structure at a time, then we have a cooperation problem. 

These are resource allocation problems in which the major error to-be 

avoided is deadlock.  Finally if more than one process can access a 

shared data structure simultaneously and each process must access more 

than one shared data structure, we have a problem in class cooperation. 

NUMBER OF SIMULTANEOUS USERS     i 
i >1       ! 
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Figure 7.8.  Problems in Concurrent Processing 
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The operation a process performs on a shared data structure Is 

another dimension by which concurrent programming problems can be 

classified.  In the most general sense, a process can create (write) an 

element in a data structure; read an element of a data structure; 

change an element of a data structure; or destroy (consume) an element 

of a data structure. 

Lastly, the scheduling rule which we use to allocate exclusive 

access to the data structure can be used to differentiate between types 

of concurrent programming problems.  In the case of the monitor, the 

processes which request access to the data structure are given access to 

it on a first come-first served basis.  However, as we have shown 

previously, others scheduling rules may be desired. 

0 

From this simple, classification scheme for concurrent programming 

problems, we can identify which problems occur in GSIM.  Figure 7.9 shows 

the GSIM tactical software processes and the data sets that they access, 

and Fig. 7.10 classifies the ways in which each data structure is used. 

The SRDS and TOTDS are producer/consumer problems and were easily Imple- 

mented using the monitor construct. The RAQ and OTDS however were data 

sets for which we Identified difficulties In the monitor implementation. 

These data sets exhibit requirements for priority access and multiple 

operations, respectively.  There are a number of examples of concurrent 

processing which do not occur in GSIM, however, we expect that all of the 

types of concurrency will be present in a BMD software system.  For 

example, if there were multiple processes which assimilated radar returns 

and a number of processes which generated verify pulses, we would have 

classified the SRDS as a problem of mutual exclusion of classes with no 

priority. 

0 

7.3  ASSERTIONS FOR CONCURRENT PASCAL MONITORS 

In this section we develop assertions for the search return data 

set monitor in GSIM. But first we identify several general requirements 
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for the correctness of any concurrent processing Implementation.  From 

these we define correctness criteria for the class of problem the SRDS 

illustrates.  Finally we describe a symbolic execution technique for 

deriving verification conditions from these assertions. 

In Ref. 27, Dijkstra identifies four criteria for the correctness 

of a solution to a mutual exclusion problem.  They are: 

• Mutual exclusion - only one process at a time may have 

access to a shared data structure 

• No deadlock - when a shared resource is requested simulta- 

neously by several processes, it must be granted to one of 

them within a finite time 

• .  No starvation - when a process acquires a shared resource, 

the process must release It again within a finite time 

• No busy waiting - a process should uot consume processing 

time while it is waiting to acquire a shared resource 

In addition, our solution should not make any assumptions about the 

relative speed of the processes since in general we cannot predict the 

order in which processes will be executed. 

The search return data set has been identified as the shared data 

structure of a producer/consumer problem.  To prove the correctness of 

our monitor solution we must show that several assumptions are not 

violated. The first of these is that the producer and consumer are 

prevented from accessing the queue simultaneously.  Since this is an 

implicit assumption when the queue is implemented using a monitor, we 

cannot prove this assumption wiJioüt appealing to how the monitor con- 

struct Is Implemented. Secondly, we must show that the data structure 

behaves as a queue. That is, raesoages cannot be taken from the queue 

when it Is empty, a new message cannot be placed in the queue ;.'hen it 

is full and that any message placed In the queue will eventually be 
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f retrieved from the queue. Thirdly, we must prove the "no blocking" 

criterion:  both the producer and consumer cannot be waiting for each 

other simultaneously.  For the monitor implementation, this implies that 

for every DELAY statement in a monitor procedure there must exist a 

corresponding CONTINUE statement and that if any DELAY statement has been 

executed, then the path which contains the corresponding CONTINUE state- 

ment can be executed to remove the DELAY.  Finally, we must show that 

neither the producer nor consumer can continually overtake the other by 

always gaining access to the shared data structure, that is, that the 

scheduling of the monitor is fair. 

We will now derive the assertions which describe the correct 

behavior of the SRDS monitor.  The first assertion is the invariant for 

the correct operation of the queue.  As shown in Fig. 7.1, the queue is 

implemented by an array of search returns whose maximum index is LIMIT 

- 1. The element at the front of the queue is Indicated by the Index 

HEAD and the element at the end of the queue is Indicated by the index 

TAIL.  Since elements are inserted into the array in a circular manner 

(after an element has been entered in position LIMIT - 1 the next element 

will be entered in position 0), the length of the queue is given by the 

expression: 

LENGTH ■ ABS(TAIL - HEAD) + 1 

Therefore, the invariant assertion for correct operation of the queue is 

0 £ LENGTH <_ LIMIT AND LENGTH = ABS (TAIL - HEAD) f 1 

This assertion must always be true in the monitor. 

We can however make stronger statements concerning the number of 

elements In the queue after DELAY statements and before CONTINUE state- 

ments. Figure 7.11 shows the SRDS monitor with comments which indicate 

the conditions which must be true after DELAY and before the CONTINUE 

statements In the PUT and GET procedures.  In the PUT procedure, the 
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sending process is delayed if the queue is full.  This process cannot be 

resumed until the GET procedure is called and the CONTINUE operation is 

executed indicating at least one empty position in the queue.  Conversely, 

the process which calls the GET procedure is delayed if the queue is 

empty.  It cannot be restarted until the PUT procedure is called and its 

CONTINUE operation is executed signaling at least one element in the 

queue.  The assertions which must be placed after the DELAY statements 

and before the CONTINUE statements in order to express these relation- 

ships are shown in Fig. 7.12.  In general, the assertions which must 

surround a DELAY statement can be expressed as 

{I A IB} DELAY {I A B} 

and those which surround a CONTINUE statement as 

{I A B) CONTINUE {1} 

In these assertions, B expresses the condition which must be satisfied 

before a task can be reactivated following a DELAY operation. The 

assertion I (the monitor invariant) must be true whenever the locus of 

control changes in the monitor.  Since any monitor procedure can be 

executed after a DELAY operation, this invariant must be true on entry 

to any monitor procedure. In the case of the SRDS monitor, the invariant 

is simply our first expression describing the correct operation of the 

queue. 

The final assertion in each monitor procedure must describe what 

result the execution of the procedure had upon the queue. For the PUT 

procedure, this is that an element is entered at the tall of the queue 

RTNQ (ABS (HEAD - LENGTH)] - RETURN 

Similarly in the GET procedure, the assertion must state that an element 

is retrieved from the head of the queue 

RETURN - RTNQ [ABS (TAIL - LENGTH)] 

The monitor for the search return data set, complete with its assertions 

is shown in Fig. 7.13. 
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(*   ON»   FLF.MFNT   in   THE   UiiFUE   ») 
ASSF.PT ( \<3LFHG1H<SLI^IT AMO LENGTH « ABS CTATU-«F AD) ♦ ! ) I 
Ktll^N   :s   ^TNRlHtAn)    | 
HEAD is (HEAO ♦ 1) ^Cn LIMIT I 
LF^GTH js LEMGTH « 1 | 
{* OMF FrPTV OUfcUE POSlTinN *) .   r r.,   ., 
ASSE»T   (   -XSLENGTH^LIHIT-I   AND   LENGTH   ■   AÖS(T AlL-HEAD)   ♦   1)   I 
rONTI^'UF   (SENDEE)   t 
FINAL ( BETU»N « HTNQrAPS(TAiL-LENGTH)) 

IKt)   (* GET *) I 

O 

PEGIN (* INITIALIZE •) 
HtAH jx 0 I 
TAU I» 0 | 
LENGTH IB 0 

END (• 5»ÜS MCMTüR *) I 

Figure 7.13.  SRDS Monitor with Assertions 
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To generate verification conditions, we must perform symbolic 

execution over all paths between any two assertions.  For all paths 

in the monitor except those containing DELAY statements, this is the 

same method as we have used for other programs.  After a DELAY statement, 

however, any other monitor procedure may be executed.  So, in the general 

case, we must generate verification conditions over all paths in all 

other monitors I  Fortunately, we can use the procedure we have developed 

for subroutine calls to make this problem less difficult. 

Since the verification condition generator and simplifier in the 

Software Quality Laboratory cannot as yet analyze Concurrent PASCAL, we 

will not show all the verification conditions and proofs for the SRDS 

monitor generated automatically. However, as a manually derived example, 

wa will show that the "no blocking" criterion holds for thl^ monitor. 

First assume that the PUT procedure has been called and that the queue is 

full. Therefore the process which called the PUT procedure is delayed 

and the condition 

LENGTH - LIMIT 

is true. The verification condition at the DELAY statement is therefore 

0 £ LENGTH « ABS (TAIL - HEAD) + 1 1 LIMIT 

A LENGTH - LIMIT 

which simplifies to 

0 <  LIMIT - ABS (TAIL - HEAD) + 1 1 LIMIT 

and finally gives the expression 

0 £ LIMIT - ABS (TAIL - HEAD) + 1 

Since there is only one sending process, the only monitor procedure which 

can be called next is the GET procedure. Examining the paths in the GET 

procedure we find that the process which invokes it can be delayed if the 

condition 

LENGTH - 0 
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0 

is true.  The verification condition at the DELAY statement in the GET 

procedure is 

0 <  LENGTH = ABS (TAIL - HEAD) + 1 < LIMIT A LENGTH = 0 

which simplifies to 

0 = ABS (TAIL - HEAD) - 1 < LIMIT 

Both of these expressions must be true for each process to b'i  writing on 

the other and since the expression ABS (TAIL - HEAD) + 1 appears in 

both verification conditions we obtain the combined expression 

0 = ABS (TAIL - HEAD) + 1 = LIMIT 

which implies that 

LIMIT = 0 

Since LIMIT is the length of the queue, the two processes cannot block 

each other unless the queue has a length of zero. 
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APPENDIX A 

GRAMMAR DESCRIPTION FOR VERIFIABLE PASCAL 

In the listing which follows is the syntactic description of 

Verifiable PASCAL as presented to the Compiler Writing System (CWS). 

The imbedded semantic actions used to complete the Verifiable PASCAL 

Preprocessor have been removed from the data for clarity and brevity 

19 

O 

In preparing this grammar, close compatibility with the distributed 

version of the CDC 6000 standard PASCAL compiler was maintained.  For 

example, the names of standard procedures and functions for that compiler 

are defined in the grammar, and are treated by the preprocessor as 

reserved identifiers. 

In order to permit more effective error recovery in the generated 

preprocessor the grammar input to CWS departs slightly from the descrip- 

tion shown in the syntax diagrams (see Sec. 3.2.1). For example, the 

rule for statement list <STALIST> does not require a semicolon to separate 

consecutive statements, but the syntax diagram does. 

O 

The grammar is stated as a set of rules in a form similar to BNF: 

non-terminal = list of elements 

As used in the grammar for Verifiable PASCAL, the elements are: 

IDENT, a PASCAL identifier 

ENTIER, a PASCAL integer 

REEL, a PASCAL real number 

LhAINE, a PASCAL character string 

V 
VIDE, an empty element 

A-1 
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FDF, the end-of-file 

= and =, delimiters for a reserved word or a reserved identifier 

< and >, delimiters for a non-terminal identifier 

V, to separate alternatives 

[ and ], to group elements 

*[ and ]*, to signify that zero or more of the enclosed may occur 

+[ and ]+, to signify that one or more of the enclosed occurs 

=, to separate the left part of the rule for a non-terminal from 

the right part 

$, to signify the end of a rule 

The grammar is shown in Fig. A.l preceded by a sequence of options 

for the first two phases of CWS. Rules of grammar begin after the symbol 

REGLE and terminate with the symbol FIN. 

I 
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PROGRAMME   tVtlCtH. 

0 

Of BUT 
PASCtLV 
OFTiaS 
FOICTICN 
FTEPCIK« 
GOAHKtlÄF 
«f OUItf 
LLUH 
t 

13    OPIICf'S 
n Ar.cuis 
1?   MOItCLfS 
U   OPERAUURS 
l^   RESEPVES 
15 PRCCSYfRCLCAPTURE 
16 BLAfCSGRCUPES 
17 UIILICEM   10 
19   MiXICfM     99/ 
19 LONGZCKFrHi.000 
20 LCNOOtlfEBO 
21 MAXKeCMFFU 
Zl   OELCOt"fEKT«**> 
iS   t 
21»   TEHMIKAL 

IOFNT 
fMTIER 
REf L 
CHAIME 
EOF 

30   REGLE 
Jl    <AXIO*>   « 

<PROGRAM>   FOF 
t 

25 

27 
29 
29 

32 
33 
3".   <P«OGRth>   x 
35 
36 
37 
38 

t    t   =0PTlONS=   <0PTI0NLIST>   1   v   VIDE   ) 
I    {   rPROGRAMH   <PR0GHEA0>   I   v   WIDE   1 
<8L0CK»   :.I 
I 

39   «OPT10M.IST>   x 
1.0 
111 
kZ   <SHITCM> 
(•3 

■>$ 

1.6 

•f    <SMITCH»   ===   <OPTION>   1» 

^ASSERT:   v   =UNITSs   •   =C0NTROU=   v 
It 

■RIGHTS: 

<OPTICK>   x 
=ON:   »   :OFF=   v  =»SIS= 
t 

It«   <PROCHEAD>   x 
I0ENI   <FILELIST>   zfs 

51 «FILEL1ST»   • 
52 =«=   <FILES>   =)r 
SI t 
5*.   <FILE5>   » 

«FILEIO»   »t   :,s   «FILEI0>   !• 
I 

57   «FIUIO   « 
5« {   IOCNT   (   : 
59 t 

50 

55 
56 

»  VIDE   I   ) iiNPuii v -OUTPUT; 

o 
Figure A.l. Grammar for Verifiable PASCAL 
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&3 «BLOCK»   ' 
bl I    t    ?LABEL=   <LABELPART»    1   *   VIDE   I 
bi (    C    rCONST;   «CONSTPBRTk   J   v   VIDE   J 
03 I   t   ;TYPt=   <TYPEPä*T>   1   v  viOE   1 
6i< (    (   s«tft3   <VARPART>   1   v   VIDE   ) 
65 (   '(   (   iPPOCEOUREr   <PROCPÄRT>   1   «   I   HFUNCTION:   <FUNCP»RT>   )   1*   1 
66 <3O0Y> 
iT t 
6« «ÜOOY>   » 
69 ;BEGIS=  <ST»LIST> SENO; 

713 J 
Tl «LAQElPiRT»   = 
7Z •(   ENTIE« •   :,=   »   =tr   »• 
73 » 
7lt «CONSTPART»   « 
75 •(   'CONSTOEO   v   =5=   i* 
7b % 
77 «CONSTDEO   » 
7» I0ENT   H»=   «CONSTANT»   «UNITSDEC» 
79 1 
40 «CONSTANT»   « 
tl «CONSTA»   v   IOEMT 
12 t 
63 «CONSTA»   x 
«I. CH&INE   •   sTRUE:   »   iFALSEt  v   =«AXINT=  *   SNILH   »   ENTIER   »  REEL 
S5 »   I    I    =♦=   »   :-=   1    I   ENTIFR   »   REEL   v   IQENT    1    I 
86 t 
37 «UNITSDEC»   » 
68 (   iUMtrSI   «UNITSTERH»   1   v   VIDE 
69 '     < 
93 «UNITSTERH» « 
91 «Uf«ITSf»CTOR» •( t =•= v ;/= J «UNITSFACTOR» 1» 
92 S 
93 «UNITSFACTOR»   * 
9k I   IDENT   v EMTIER  »  REEL  *  I   =ls  «UMITSTEKH»  =»s   1   1 
95 »t   =••=   «UNITSPOWCR»   J» 
96 t 
97 «UNITSFOWF^»   ■ 
96 lOENT  v   EMTIfR 
99 5 

100 «TYPEPART»   * 
101 M   «TYPEOEC»   »   =t=   >• 
102 t 
133 «TYPEDIC»   » 
IC IOENT   z*-   «TYPE» 
135 t 
106 «TYPE»   » 
107 (   (   :PACKEO:  v  VIOE   1 
106 I    C    l*Mitn   «A7RAV0FC»   I 
103 »   I   EFILEH   =OF=   «TYPE»   I 
110 • t =SF5HENIF0= sFILEs sOFs «TYPE» I 
111 » I =SEI: =CFz «S1HPLETYPE» 1 
112 • t rRECCRO= «FIELOLIST» sENOr I I J 
113 » t =t= IOENT 1 
11» » «SIHPLETYPE» 
115 t 
lib «ARRAYOEC» ■ 
117 zlz   «SXHPLETYPC»  »l   5ts   «SIMPLETYPE»   1»   Sis  sOFS  «TVPE» 
116 t 

Figure A.l  (Contd.) 
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119 <SIHFLrTYPt>   = 
Hü 1    sINTEGEPs   v   ^PtALr   »   JTEKTH   •   iCHAR:   v   =BOOLEAN=   v   :ALFA: 
121 v   [    ;(=   <IOLISI>   it;    1 
IZZ v   I    <CONSTA>   ;..;   <CONSTANT>   1 
123 v   IDENT   1   I   =..=   «CONSTANT>   1   v  VIDE   1   ) 
m <UNITSOEC> 
125 % 
126 <FIELCLIST>   = 
127 t  <ri«froPAim i  t  =rASE= ^ARIANTPART» I w VIOE  I  i 
128 v [ i t 5CASE= <VARIANTPART> I v VIOE 1 I 
129 t 
130 «FIXFCFAPT> > 
131 «t <FIXEODeC> - =?= !♦ 
132 I 
li3 <FIXtOOEC> • 
ISk «lOLIST» t =1= • ='/.= 1 <TyPE> 
135 $ 
134 <VARIAKTPART> » 
IST IOENT t t I ;«H v tti   1 IOENT J v «IDE 1 =OF= <CASE> 
1J5 M =PF: <CASE> 1» 
139 t 
ttg «CASE> = 
11.1 <CONSTANT> •! =,= <CONSTANT> !• 1 =1= » =7.= 1 =1= <FIELDLIST> =) = 
Ikt t 
IkZ   <VARP£PI>   • 
Ikit «t   <VAROEC»   v   HS=   »• 
US % 
thh   <VARDEC> « 
ikt <IDLIST» C =1= * =y.= J «TYPE» 
Ikt t 
1'.9 «IDLIST> * 
150 IOENT •( Stl IDENT I» 
151 t 
152 «PRCCP»HT>   ■ 
153 <PROCHEAO>   i;=   <PROCBOOY>   z',z 
15<t                       t 
155 «FUNCFART»   - 
156 <PROCMEAO>   f   i«=   »   tti   J 
IS? I IOENT v ^INTEGER: v rBOOLEAN: • rREALs » =CMftR= v =ALF»= I 
153 =;i «PROCBOOY> =?= 
159 t 
160 «PROCl-t*D> = 
161 IOEHT <PARAHLIST> 
162 t 
163 «PRCCtCOY>   = 
l',k :FOÄTRAN=   »   =EXTERN=   »   iFORWAROs  v   <BLOCK> 
165 t 
156 «FAPiMLIST>   s 
157 I   HI   <PARAH3>     :l r   1   »   WIOE 
168 t 
159   «PAR«fS>   » 
170 «PARAI»    '[   Sti   <PARAM>   )• 
171 S 
172 «P*R*P>   » 
173 t =PROC£OURE= «IOLIST> I 
17» » t t =FUNCTION= v =V4R= v VIOE > <IOLIST> { ilr v =TC= J 
175 ( IOENT « ilNTECERi « iBOOLEAN: * =R£AL= » '.CHAR: » -ALFA: « iTCXTi 1 I 
176 t 
177 «STAUST»   • 

o 
Figure A.l  (Contd.) 
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li'» 

IRQ 
181 
182 
1831 
181. 
185 
186 
ier 
188 
189 
na 
191 
192 
191 
19i« 
195 
196 
197 
198 
191 
209 
201 
202 
2Q3 
23* 
203 
206 
207 
29S 
209 
213 
211 
212 
21J 
2U 
215 
216 
217 
218 
219 
22 0 
221 
222 
223 
22<. 
225 
226 
227 
228 
229 
210 
231 
232 
233 
23l> 
235 
23b 

•[ <STATE«FNT> v »ti 1» 
S 

«STmhEM> = 
<ST4U8EL> • «STSTYPE» 
t 

«ST*L«BE(.» * 
ENflE« r =1= » zV.-   I 
{ 

<STATYFE> ■ 
I EBESINi <STALI3T> =EN0r J 
v t rIFr «IFSTA> ) 
v C =C«SE: «CASESTA> I 
v >    THHILE: <WMILESTä> 1 
w 'i   iREPEAT; <«EPEÄTSTA> 1 

ro«; <FORSTA> ) v I 
v I EMirH! 

=5010= 
<HITHSTA> 1 
«G0T0ST»> J 

t t I0ENT v <Sr0PB0C» I f I :(= <INVLrST> =1- 
( <auALLIST» t =!»= v 3X«= I «EXPRESSION» 1 
t t =l«r » =X»= I <£XPRESS10N> 1 v WIDE J 1 
( =ASSERT= <«S3ERTSrA> I 
t :INITIAL= <ASSERTSTA> 1 
C iFIMALH <A3SERTSTA» 1 
I =Ir4PUT= <IDLIST» I 
C =0UTPUT= <IDLIST> J 

«IFST4> * 
«CON0ITIOKAi.> 
•I =C?IF= «CONOITIONAU» 1» 
C ( EELSCI <SIÄLIST> I « VIDE 1 
I sENOIFi v I =ENO= sIFr ) 1 
I 

<CCNOITIONAL> * 
<EXPRESSIOM> sfMENs <STALIST> 
t 

<CASESTA> ■ 
«EXPRESSION>   sOFE   C   «CASP>   »  »IDE   I 
•I   iOF=   I   «CASP»   »   V10E   1   I* 
i nwcAsii • ( iiMOi ictsci i i 
t 

«CASP> ■ 
<CASELA9EL» «STALIST> 
t 

<CASELAB£L> ■ 
<CONSTANT> •{ i«| «CONSTANT» )• I 
I 

«WHILESTA» > 
«EXPRESSION»   SOO:   «STALIST» 
I   HNSMHILFs  «  (   IfNDI  H'vHILCi   I   1 
1 

«REPFATSTA»   ■ 
«ST4LIST» lUMTtLI «EXPRESSION» 
t 

«FORSTA» ■ 
IOENT ( =!>= » 
( iENOFOR: v I 
S 

«FORLIST» ■ 
«EXPRESSION» ( =TO: » rOOMNTOH ) «EXPRESSION» 

■I: « ztl   1 

X-= 1 «FORLIST» =00= «STAUST» 
ENOr :FORi 1 I 

Figure A.l (Contd.) 
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239 «'■,*'>STA> = 
ZJ? <VaRLIST> =00= <ST4LIST> 
2-.fl I   =EN3HITH= v I =EN0= =MITH= ) J 
2i»l « 
21.2 <V*RLIST> • 
2W3 <VARItaLE>   •(   :,:   <VARUBLE>   I* 
2iti> S 
2«5 «VARI»BLF>   » 
?»S I0ENT   (    <QUALLIST»   v   VIDE   ) 
2i»7 % 
24S <CUALLIST> - 
21.9 *l   I   =t= <EXPRFSSION> •( =.r <EXPRESSION> 1» =1= I 
253 v C =.= IOENT J 
251 • =♦= I* 
252 t 
25J <C0TOSTA> » 
251. FNTIE« 
255 t 
255 «ASSEPTSTA> = 
257 <ASSERrEXP> ( l =FÄIt= <SrALIST> 
259 I iENOFAILr » I sENDi =FAIL= I I 1 v VIDE 1 
259 t 
250 <ASSERTEXP> » 
261 <3UANTFXP> I ( |«»! <QUANTEXP> i ¥ VIDE ) 
252 t 
25J «QU4NTfXP> « 
2S«. t   <EXPRESSI0N>   J   v   (   t   Zlllz  v  =S0ME=   )   <QU»NTAIL>   > 
255 t 
256 <QUAKTAU>   ■ 
257 =«r   IDENT   =IN=   <QU4NTLIST>   =IS=   «ASSERTEXP»   =1= 
25S t 
259 «CUAtiTLISI»   * 
279 'EXPRESSION   I   =T0r   v  =00HNT0=   )   <EXPitESSION> 
271 "t 
272 «IhVLIST> . 
27J <INVPA«> »t =,= *INyPAR» 1» 
271, It 
275 «INWPAR» a 
276 (   <FXP^ESSION>   •(    t   =1=   v   =Xs   1   <EXPRESSION>   )•   1 
277 »   =IKPUT=   •   rOUTPUTi 
27» 1! 
279 «EXPRESSION   » 
296 «SIMPLEE7P> 
2BI I    (   [    1*1   *   =»z   •   r>r   »   ztz   »   ziz   v   ziz   *   s<»=   »   z**z   *   r>» 
292 •   =EQ=   v   =LC=  •   sNEs   v   JGEr   v   =LTs   •   sCT=   w   rINs   1 
253 <SIMPLEEXP>    J   v   tflQE   1 
2ii» t 
255 «SIHFLEEXP»   * 
296 t   I   =♦=   <IEI«M>   1   v   I   r.=   <rERM>   1   v   <TE«C>   J 
297 »i   t   =♦=   •  s-=  v   rORr »   =yr   J   <TERH>   !• 
289 t 
299 <TERH>   » 
290 <FACrDR>   •!   (   =•=   •  =/=   v  rOIWs  •  =HOO=  v   HANDS   v =»=   J 
291 «FACTOR» !• 
292 I 
293 <FAC1CR> a 
29<. ( itl t i <S£T> III ) v 111 ) ) 
295 » I C sNOTr w =-= J «FACTOR» 1 

Figure A.l (Contd.) 



lib 
Zi7 
298 
299 
300 
301 <seT> » 
302 
303 
JOW <Me»«BER> 
30S 
336 
307   <STDPRCC>   * 

• I    zlz   «fXP»CSS:ON>    JJr    I 
» [   C   IDEHT   »   «STOFUNC»    1 
I t   r(=   <INVLIST»   =»r   1   »   <QUALLIST>  v   VIOE   1    ) 
» CHA1NE   v   REEL   v   EMIER   v   =NIL:   •   iTRUEE   »   :FALSE=   w   EHAXINTH 

<M£MBER»   »t   =,r   <HEHnER»   !• 
t 

<EXPRESSIOM>   t 
t 

C   i..r   <EXPRESSIOh>   )   »  WIDE   ) 

EGFT;   »   ENEW;   "    :PACK=   w   iPAGE:   v   iPUTi   •   rREAOi   v   SREAOtNi 
»   :RtSEr:   v   zREH^ITEH   v   rUNPACKE   *  EMRITEE   v   EHRITELNE 
'   EOATEE   »   ECETSEGE  v   EHALTE  »  ELINELIMITE *  EHESSAGE: 
»   EPUTSEGE   »   =T1KEE  »  rDISPOSEE  »   ERELEASEE 

3J9 
310 
311 
312 t 
313 <STDFUMC> ■ 
31«. EABSE • EARCTANr » rCHR= v =COS= V EEOFE • =EOLN= • EEXPE 
315 » EINE » EODOr • EOROE » EPREOr v EROUNOE v rSIME » ESQRE 
316 • ESCRTE » iSUCCi • iTRUNCE 
317 » ECARD: v =CLOCKE » EEOSE • EEXPOE * EUNOEFINEOH « ERANOOHt 
318 t 
319 FIN 

Figure A.l  (Contd.) 
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APPENDIX B 

TRANSLATION TEMPLATES FOR VERIFIABLE PASCAL 

o 

The templates for translating Verifiable PASCAL control structures 

and executable assertions are outlined below.    Where approprxate,  keywords 

are retained in the translated text as comments  (e.g.,  ENDIF becomes 

(*ENDIF*)).    Original comments are suppressed. 

For the option ASSERT ■ ON,  the following variable declaration 

statement is inserted into the VAR group of each module: 

ASSERT  :  BOOLEAN 

If a module has no VAR group,   one is inserted automatically. 

For a Boolean function which contains only assertion statements, 

an assignment statement is generated at the end of the statement list 

for the value of the function: 

function name  :- ASSERT 

The templates shown below are valid only for an assertion expression 

which does not contain another assertion expression as a subexpression. 

O 
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Statement   Source Translated Source 

II- 

CASE 

FOR 

WITH 

IT expression THEN 

statement list 

OR IF expression THEN 

statement list 

ELSE 

statement list 

END IK 

IF expression THEN 

BEGIN statement list 

END (*ORIF*) 

ELSE IF expression THEN 

BEGIN statement list 

END 

ELSE 

BEGIN statement list 

END (*ENDn-'*) 

CASE expression OF 

case label list: 

statement list 

OF case label list: 

statement list 

END CASE 

CASE expression OF 

BEGIN statement list END 

;{*0F*) case label list: 

BEGIN statement list END 

END (*END CASE*) 

WHILE      WHILE expression TO 

statement list 

END WHILE 

WHILE expression DO 

BEGIN statement list 

END (*END WHILE*) 

FOR control variable 

:- for list DO 

statement list 

END FOR 

FOR control variable 

:- for list DO 

BEGIN statement list 

END (*F.ND FOR*) 

WITH variable list DO 

statement list 

END WITH 

WITH variable list DO 

BEGIN statement list 

END (*END WITH*) 

INITIAL, 

ASSERT, 

FINAL 

INITIAL 

ASSERT assertion 

expression 
FINAL 

(without fail clause) 

FAIL statement list 

END FAIL 

(*keyvord*1 assertion expression 

code; 

IF NOT ASSERT THEN 

WRITF.LN ('ASSERT FALSE 

AT TEXT LINE statement 

number FOR STATEMENT 

AT module statement') 

IF NOT ASSERT THEN 

(*FA1I.*) BEGIN 

statement list 

END (*END FAIL*) 

1 
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f 
assertion Ä 

expression 

first order expression 

p AND q 

p OR q 

p -> q 

ALL (1 IN m TO n IS p) 

ALL (1 IN m DOWNTO n IS p) 

SOME (1 IN m TO n IS p) 

SOME (1 IN m DOWNTO n IS p) 

ASSERT :«■ p AND q 

ASSERT :- p OR q 

ASSERT :-p; 

IF ASSERT THEN 

BEGIN 

ASSERT :- q 

END 

ELSE 

ASSERT := TRUE 

ASSERT := TRUE; 1 :- m; 

WHILE (1 <- n) AND ASSERT DO 

BEGIN ASSERT :• p; 

1 :- i + 1 END 

ASSERT :- TRUE; 1 :- m; 

WHILE (1 >- n) AND ASSERT DO 

BEGIN ASSERT :- p; 

1 :- 1 - 1 END 

ASSERT :« FALSE; 1 :- m; 

WHILE (i <- n) AND NOT ASSERT DO 

BEGIN ASSERT :- p; 

1 := 1 + 1 END 

ASSERT :- FALSE; 1 :- m; 

WHILE (1 >- n) AND NOT ASSERT DO 

BEGIN ASSERT :- p; 

1 :- 1 - 1 END 

O 

Templates are valid for only where p and q are PASCAL expressions 
of Boolean type,  1 Is a PASCAL Integer variable, and m and n 
are PASCAL expressions of Integer type. 
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APPENDIX C 

TRANSLATION TEMPLATES FOR IFTRAN WITH ASSERTIONS 

The IFTRAN preprocessor recognizes a set of assertion statements 

which can be translated to compilable FORTRAN and executed.  The default 

translation of IFTRAN assertions is into FORTRAN comments.  This section 

describes the IFTRAN commands which cause executable assertion translation, 

The executable form of the INPUT and OUTPUT statements writes the 

current values of all variables in their variable lists. Thus, the INPUT 

(OUTPUT) statement prints input (output) variables of a routine when used 

as described in Sec. 3.2.  The commands associated with INPUT and OUTPUT 

statements are 

IFTRAN COMMAND 

TRAC 

TROF 

UNIT name 

FUNCTION 

Trace input and output values 

Resume default mode of no tracing 

Use as output unit the FORTRAN variable or 

constant name 

Figure C.l is an example of a subroutine which uses the trace commands to 

indicate its input and output values whenever it Is executed. 

The executable form of INITIAL, FINAL, and ASSERT statements evalu- 

ates the first-order logic expression asserted with current values of 

program variables.  If the expression is false, an error message is 

printed and any associated FAIL BLOCK is executed. The syntax of INITIAL, 

FINAL, and ASSERT statements with or without FAIL clauses Is defined in 

Sec. 3.3. The commands associated with ENTRY, EXIT, and ASSERT statements 

are 
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IFTRAN COMMAND 

A SON 

ASOF 

UNIT name 

MODN name 

FUNCTION 

Clieck assertions for validity during 

execution 

Resume default mode of no checking 

Use the FORTRAN variable or constant NAME 

as output unit 

Provides the name of a routine which has 

ENTRY, EXIT, or ASSERT statements 

i 

The "ASON" and "ASOF" and "UNIT" commands are global commands in 

that they refer to more than one routine.  The "MCDN" command is local 

to an individual routine.  It can occur anywhere that a logical declara- 

tion statement is legal In FORTRAN. Deck specific executable assertion 

checking is turned on by the "MODN" command.  An example of a subroutine 

which will produce exception reports when executed is given in Fig. C.2 

The executable code for each type of assertion expression is given 

in Flg. C.3. 



CTHAC 
CLMIT 

SUÜMtUriNE   WL7PLY(AiB,C.N) 

LüUT 
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LfiTfl   LüLT   /fe/ 
IlvPLT (i\i«A.d) 
Lü(I=ltN) 

IUWOKE( CüWPUTt NEl» AHKAY £.LLKtM ) 
.   LNU UO 
EMD LO 

bLOCM CüvPbit NLIH ARRAY LLEwEfJY ) 
•   !J « 0. 

uO(KsliN) 
S > S « A{I,K) « Ü(K,J) 

LMu UO 
C(ltJ) s S 

tr.u bLuCK 
CüTPbKC) 
HLTLRN 
END 

O Figure C.l.  Trace Commands 

FUNCTIUN SJRKAJ 
CASON 
CKODN SQRT 
CUMT LOOT 

cATA LOOT /6/ 
IMTIALC A .bl. 0 ) 
* » II 
WHILEC AGSiX-A/X) .GT. l.t-6 ) 
.   X = (X « A/X)/2 
END ».HiLE 
SURT x X 
FINAL( ABS(SCRT*»2 - A ) .LE. l.E-6 ) 
RCTORN 
END 

O 
Figure C.2.  Executable Assertion Commands 
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ASSERTION EXPRESSION 

(P .AND. Q) ASSERT = P 

IF (ASSERT) 

ASSERT = Q 

ENDIF 

(P .OR. Q) ASSERT = P 

IF (.NOT. ASSERT) 

ASSERT = Q 

ENDIF 

(P .IMP. Q) 

(ALL I IN (l.N) (P)) 

ASSERT = P 

IF (ASSERT) 

ASSERT = Q 

ELSE 

ASSERT = .TRUE. 

ENDIF 

ASSERT - .TRUE. 

1=1 

WHILE (I .LE. N .AND. ASSERT) 

ASSERT = P 

IF (ASSERT)  1*1+1 

ENDWHILE 

I 

(SOME I IN (l.N) (P)) 1=1 

(I .6T. N .OR. ASSERT) 

ASSERT = P 

IF (.NOT. ASSERT) 1=1+1 

UNTIL 

(I  .GT. N .OR. ASSERT) 

Figure C.3. Translation Templates for IFTRAN Assertions 

) 
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CONTENTS CF FILE/COMMNO PRIOR TO STARTUP OPERATION 

I.tw LIBRAHt = TtKP. 
SI AKT ,LA'.OUAGE = IFTRAN, 

fiflcIC, 
FLP ALL NCUuLES. 
S IRL/CTURAL. 
PHIKT.^QCULL. 

yl.GiPATH = Ü»X«2 
VtG.HEPLAtt. 
P   .GE.   1   =   b   .ST.   0 
*ttiOt 
VCG.PATH=2.1.3 

VLG.KCPLACE. 
Y .GT. 1 = t .6t. 2 
•iNCt 
V(.G«PATHs2<2i3 
ENG FCR. 
END. 

VCG.F/>TH=<»1.2 

LINE 

1 
II 
W 
13 
IS 

SUBROUTINE TIKES I At BI X J 

PAIh SOüHCE TEXT 

SUUROUTINE TIMES I A. B. X » 
INITIAL ( B .GE. 0 ) 
SUh s 0 
t s H 
WHILE ( T .Nt, 0 > 
.  ASSERT « SUM .Eö. A • C B - t ) .ANC. t .6£. 0 ) 1 

WtPlFICATIUN Cl-NCITICN SUBROUTINE TIMES t A« B. X » 

Llt.E    VtRXFXCATlCN CONDITION 

11    6 .GL. Ü 

ANU 

19    B .NE. (I 

........... IKHLXES ———•——— — - — -- — -——-——"— 

la    0 ♦ A .EQ. A • ( U - J B - 1 ) ) .AND. 8-1 .GE. 0 

) 
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< VtG.PATH=2«l«2 

CLflLSE VERIFICATION  CÜNDITION 

1 B   .ST*   Ü 

. iKHLiES — 

2 a   til,   1 

RULE      B .GL. 1 = u .6Tt 0 

RtPLACE   8 .St. 1=6 •ST. 0 

SUBROUTINE TIMES ( A. B, x ) 

0 

o 

VCGtREPLACE. SUBROUTINE TIMES ( A. B. X J 

FHOCF OF VEH1FICAT1CU CONOiTION COrHPLtTEU 

VCG.PATh: .-2 1 >i 

LIf.L 

1 
u 
12 
13 
15 
21 

SUBROUTINE TlMtS ( A. Bi X ) 

HAI»< SUUXCE TEXT 

SUbRÜUUNC llUlM   ( A. d, X ) 
INITIAL ( 6 .GE, 0 ) 
SUM = 0 
V * t 
totULE ( Y .NC. 0 ) 
FINAL < A .tü. A • B ) 

VtRiriCATXUN CUNCITICN SUBROUTINE TIMES ( A« Bf X ) 

LINE    VEBIUCATICN CCNCITICN 

11    B .bE. Ü 

ANU 

19    B .Cb. 0 

- —— IMPLIES —* ————  

21    0 .E«. A • B 

VtG»PATM=2»1.3 

PROOF OF VERIFICATION CONOITION COMPLETED 

SUBROUTINE TlMtS ( A. B, X ) 
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.1 
VtP.TAU t«i«2> ̂  

LINL 

lb 
It. < 1) 
17 < 1) 
10 ( 1) 
19 
15 
18 ( 11 

SUBROUTINL   TlWES   (   A.   B.   >   > 

HAIH   SUUiHCE   UXT 

„HILL   (    T   .Nl.   U   I 
.      tiUl"   s   Hilf   *   A 
.      V   =   t   -   1 
.      ASSt-Kl    «   SUM   .EU.   A   •   (   B   -   Y    )    .ANU.   Y   .Gt.   0   ) 
ENliKHlLE 
WHILE   (   Y   .NE.   Ü   ) ,     »   . 
.      ASSLHT   <   SUM   .Ei.   A   •   <   B   -   Y   >   .ANC   Y   .GE.   0   » 

WERIFILATIÜIV  CUVUTICN SUBROUTINE  TIMES   J   A.   Bt   *   » 

LINE VERIFICATION   CülvOiilüN 

15 Y   .NE.   U 

AND 

16 SU"   ♦   A   .EC.   »»   •   «   B   •   (   Y   -   1   >   !   .AMU.   Y   -   1   .GE.   0 

ANU 

15 Y   -   X   .NE.   0 

     IMHLUS — "  ._————<.  

IS SUM   ♦   A   ♦   A   »*«.   A«(B-(Y-X-X)    »   .AND.   Y   -   1   -  X   .GE,   0 

' 
VtG.f ATh=2.2i2 SUBROUTINE   TIMES   (   A«   B«   X   > 

CLAUSE VERIFICATION  CONDITION 

X Y   .GT.   X 

AND 

2 .<A*BI*(A«Y)*  SUM   .EO.   U 

  IMPLIES  - 

3 V   .bE.   2 

RLLE      Y .6T. X « Y .6E. 2 

REPLACE   Y .6T. X = Y .GE. 2 

VCG.REPLACE. SUBROUTINE TIMES ( A« Bf X I 

PBOCF OP VERIFICATION CONDITION COMPLETED 

D-i8 
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VLG.PATH=i.2tJ 

lb 
ib ( n 
17 ( l) 
lb ( 1) 
19 
15 
21 

SUBHOUTINE TlwtS ( At B. X ) 

PATH SOUMCE TEXT 

..hiLL ( Y »Ul,   0    ) 
.  SUf s bUf ♦ A 
.  I r T - 1 
.  ASSLKT I SUM .Ey. A • ( B - Y ) .AfyC. Y .6E. 0 ) 

MHiLE ( Y .Nt. 0 ) 
FINAL ( X .Ey, A • B ) 

o 

VERIFICATION CCJNCITICN S^BKOUTINE JlHtS   ( Af U« X ) 

LIME    VLH1I-KATICN COhClTlUKi 

15    t .Nil U 

AhU 

le    SU»' ♦ A .EC. A « ( b - ( Y - 1 ) ) .ANU. Y - 1 «GE. 0 

ANU 

15   Y - X .Eb. 0 

... .... InRUES --— —— — — — .———— 

21   StM 4 A .EC. A * B 

V('G.PATH=2>2«3 SUOKCUTIWE TlMLS ( A, B, x » 

(   > 

PROCF   OF   VEKIFICATION  CONDITION  COMPLETED 

D-19 



VERIFICATION OF DIV 
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CUilU.Ts  OF   F lU/CoWAhC  PRIOR   TO  STARTUP  OPEKATiON 

Nth   LlHftfiRY   =   1ECH. 
SIAhLLA^C-oACLSinRAK. 
0*SK, 
FC»!    ALL   frCOüLtS. 
SIPUCTLKflL. 
PHIta.ivtLOLt. 
Vtr,.H« fh = iil«2 
V0G.PÄTh = <iia.3 
VOGi   PATHsü.Z.a 
VC(;i^AT(- = 2.k;0 
t'C   FflH, 
EM;. 

0 

\/ot,r'flTh=*:.i.i 

LIt«L 

1 
1U 
n 
ii 
14 
14 ( i) 

SUUKOOTIKE   ül\l   (   A.   B,   Q,   R   ) 

HAIh   büUHCL   TEXT 

SUuROUriut   Dlv    (   A.   b.   U,   H   ) 
UnTlAL   (   A   .GE.   0   »AftfC«   li   .GE.   0   > 
0   =   0 
R   s   A 
AHILL   (   K   .&E.   U   ) 
.     ASSERT    (   A   ,Ea.   0   •   B   ♦   h   .AKO   H   .6E.   0   ) 

VERIFICATION  touLlTICN SWMOUTlhl  Civ   <   A.   b,   6,  p   ) 

uir.E        wti<ino/»ricr. OOIJCITICIV 

10 A   .OL«   L'   •AI<0>   0   •Ot»   0 

ANU 

13          A   ,(jl,   L 

  I^HLIES      —    

IH A   .El..   (   0  •  b   )   +  A   .AUC«   A   .GE.   0 

o 

I VtCif ATH = 2.i.2 SObROuTIlNE   OIV   <   A.   D.   0,   R   ) 

PhCoF   cf-   vEKiriCATlCh   cüNLITlON   COMPLEUi; 
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Lit L 

1 
lu 

U 
iS 
u 
10 

SLÜHCUTINE   Uiv   (   A.   Bi   Ö,   R   » 

f-Alh   bütnCt   rt*I 

bUuHUUtlivC   üiv   (   At   bi   üi   H   ) 
tNi.llAL    (   A    .6Ct   U    .ALU.   b   .GE.    0    > 
i.   =   0 
K   =   A 
v.HXLL    (   h    .Gt.   U    ) 
f I..AL   (   A   .f..   0   »   R   +   R   .AUC   0   tLCt   H   .AND.   R   .LT.   B   t 

^tftlF ICATIUK   CUfiWiTlCN SLiDl-CUTlKt   DlV    (   At   Bt   0.   R   ) 

LUx VLRiFItATlOt'.   CCNCliiOK 

10 A   .ot.   l;   .At.G.   8   .&{..   U 

AM: 

13        A  .LT. k 

 -   li'f-LltS  - - --■ 

18 A   ,(.<,,   (   0   *   B   )   ♦   A   ,hhC'   0   »it«   A   «AND.   A   .LT.   B 

VtC,PATHs2.1.i SUßnCüTlivE   Ulv   (   A.   B«   0,   R   ) 

Pt.CCF   Of   w£hlFiCATiON  COMilTlON  COMPCLTED 

■,/C(;. P ATl- = Z.2.«! 

tir.L 

13 
I« ( 1) 
i5 ( 1) 
Xfe I 1) 
17 
13 
I« ( 11 

SLbhGoTIut   Ulv   (   At   Bt   Q«   R   ) 

fhlh   bOLHCL   UXT 

t,hllL   (   h   .6t.   B   ) 
.      ASSLnT   (   A   .U.   (.   •   b   •♦   M   .ANU«   H   .GE.   0   ) 
.      (.   s   u   «   1 
.      K   &   h   -   B 
LNL».HILt. 
«.HILL   (   H   .fit.   B   ) 
.      AÜStKT    (   A   .U.   (.   •   H   t   K   ..iKU«   K   .GE.   0   ) 

) 
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> c 
12 h   .OL.   b 

IM A    .L-.    (   W   ♦   u   )   ♦   K   tAuL«   h   .Ot.   0 

AUÜ 

13 f*   -   t   .tC.   b 

.- .    i^HLiLS   --  ---....- 

XM A   .L*.   (   (i.   +   l»»e)*R-B   .AfjÜ.   H   -  B   .GE,   0 

i/tG.   FATH = üi2tk SMJiU.uTll.t   OIV    (    At   bi   ü,   R    ) 

Fr>CCF   LF   vEhIFlCAllCi\   CCIVCITIOIJ   tCMPLtTCu 

O 
LI, t 

1*1    (    i» 
it ( ;) 
U (  i> 
n 
ii 
la 

bbiihOulil.t.   Ulv    (   »,   0.   ü,   R    ) 

»Aih   SLLntt   UX1 

.-.hiLL    (   h    ,(,t.   b   ) 

.      ASütl,T    (   A   tCu.   C   •   E   ♦   H   .MNü«   R    .(JE.   0    ) 

.      U   =   (.   ♦   1 

.     «   =  h  -  a 

».hiLt   (   H   .Gt.   B   ) 
FI.VAL   t   A   .tly.   U   •   6   •»   R   .AND»   Ü   .(.£.   h   «ANQ.   R   .LT.   B   I 

tftRIFICATlUi«   CCI^ITICN SUtRCUTUvE   OIV   (   At   B«   ti.   R   ) 

13 R   •&«•   t 

AKC 

1<4 A   .tu.    I   J   «   ü   )    ♦   H   .AljO«   K   .GE.   0 

li R   -   u   .LT.   tl 

  IMPULS -——   -—_... 

18 A   .Ll-,   ((ä*l»«C)+K-B   .AND.   0   .LE.  f*   -  B   .AND.  R   -  B   .LT.   B 

o 
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vLGii A1H=<:«2« J SOBhOUlIM UlV ( Ai B. Q, R ) 

PHCCF CF VERlFlCOTlCh CCNOITION COHHLETtü 

1 
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CCNtEMa   Of   FRE/COMfANO  PRIOR   10   SlAKTüP  OPERATION 

.LT.   -I   .OR.   PX1   .CO. 

.LC   -1   .AhO.   PX3   * 

SI/\hT,LAr,GUAGE=lFTRAN, 
ö«sic. 

SM-tClUrtOL. 
PMIM.NCLULE;. 
PILtrANE.LOG=OUTPUT. 
Ui.G.rATh = 2«1.2 
UtGiFAT}. = 2il. 3 
Vl.G.PA7h = <«J.e 
VLti.f-ATH = i.3«9 
VtG.REPLACE. 
EHPCN   =   .TRUE. 
*tr,c. 
WUG.PflTH=2.3.9 
VtG,hF.PL/'CE. 
ENFCH   =   .FALSE. 
»tr;c. 
Vt«tPAT»(«it2««ia 
VtG.AXIC^ . 
FM   .LT,   0   a   PX1 

vC6.AJ<lc^. 
PA1   .if'P.   PxZ   .OR.   PX3   s   (PX1   .IKH.   PX2)   .OR.    (PXl   .IMP«   Px3) 
*tr;C. 
vLG.PATHs4t2ia.6i2 
VLG.HLPLACE. 
PXl   .LT.   0   s  PXl   .LE.   -1 
• Lf,C. 
VCG.REPLACE. 
F»l   .A.NC.   PX2   .LT.   -1   .1KP.   PX2 
PXl   .Ai.o.   PX2   .LT.   -X   .1*P.   PX3 

VI-GIKEPLACE. 

PXl   ♦   HX2   .LE. 
• tKC. 
vtG.HEpLACE. 
P*l    .Gt.   0   ■   PXl 
• thC. 
V^GiAxlCiZ. 
VLG.PATHS'tta.S.T.a 
VtC.PATfsS'i'HtS 
VLGiAXIO*'. 
-t|N*K)/2)   ♦   M   ,6E. 
• tt.C. 
VCCAXIOC. 
PXl   .LT.   -1   *  PXl   .LE.   -2 
*UiC. 
VtG,REPLACE. 
-t   *   P   .LE.   -2   .AND.   PXX   .AND« 
•IV   »   K   .EC.   -2   .AND.   PXl 
«tNL. 
VCG.REPLACE. 
fj   s   M4| 
• tMC. 
VCG.REPLACE. 
(12   ♦   H   ♦   M)/2)   s  M*l 

vCC.PATHsH^tS^ii 
VCG.REPLACE. 
-N ♦ IttfUf/tl .6E» -1 ■ 
-^ ♦ H ,6E, -2 

0 s - PXl -PX2 .6t. 

GT. 0 .OR. PXl .EÖ. 0 

I  *  -N**   ,6E. -2 

'U   *   H   ,tti >2 > 
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• tf.C. 

t, B **k 
• tr t. 
UUCKEPLACE, 

((?♦(>.♦   M)/2)   s  l«*X 
• two. 

-X   ♦   AhSÖY   ((   l+t«»»    .Lt.   0   s 
X-AHRAYld + K))   .6T,   0   .ÜH.   X-ARRAY   ((i*rt))     tu.   Ü 
• LfJC. 
VtG<AX10ft2. 
\('.G,HATh = 4t«i:«5«7i3 
vCCKEf-LACE, 
X = ARRAY ((K + l4»/2» 
• tt,C. 
\/l.G.REPLACE, 
SUPTEn<A^RAY>Lt^6tH)s (ARKAY(l) - ARRAYtl+l) .LT. 0 ) »AND. (I .GE. 1) 
.'^;C. (I .LT. LENGTH) 
»tfC. 
VtG.REPLACE, 
I « (»»♦N)/2 
• t^D. 
E^C. 

VLG.HATH=2,l,2 

LINE 

1 
lb 

SUhROUmt UlNbCH ( ARRAY, LENGTH, X, LOtiKliP. ERROR ) 

HATH SULRtt TEXT 

bUbHCLTIKE blkbCh ( ARRAY, LENI.TH, X, LOOKUP, EHKCR ) 
ItUHhU   ( 1 .LT. Uk^GIH .AIML, SCKTED I ARRAY, LENGTH ) .AND. ( 

*AI«HAY ( I   ) .Lt. X »Ai.ü. X »LT. ARRAY ( LENGTH ) ) ) 
16 K = 1 
17 N « LEWGIH 
ie ERHCR = .FALSE. 
19 MHXLE. {   H   *   l   .LT. h ) 
20 ( 1>     ,  ASSLRT (N( M .LT, K .AlMC SORTED ( ARRAY, LENGTH ) ) .ANC ( ( 

*.  ARRAY ( M ) .L£. X «AND, X .LT* ARRAY ( N ) ) «AND. .NOT. FRROR ) 
• •  ) 

VtRIf iCATlUfj CUMCITICN        SUbKOUTlNE dltjSCH ( ARKAy, LENGTH, X, LOüKiiP, ERROR > 

llkf, VLRlUCATtON tCliCniCN 

13    1 .LT. LENGTH .Ahü. SOK1EO ( ARRAY , LtKGlH ) .ANC. ARKAY ( 1 ) .tf, X 
•ANU, X »LT. ARRAY ( LENGTH ) 

A NU 

19    1 t 1 .LT. LENGTH 

........ IMPLIES ..-.--.• 

o 

20    1 .LT. LENGTH .ANo. SORTED ( ARRAY , LENGTH » »ANC. ARRAY ( 1 ) .Lf. X 
.ANUt X .LT. ARRAY ( LENGTH ) .AND. .NOT. .FALSE. 
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VtG.PATH=2tli2 SUbKQUTINL OINüCH ( ARHAY« LLNGTHt X« LOOKUP« CRROH I 

PROOF OF vEHlFlCATiCN COIvDITION COMPLETED 

VCG.FATH=2.1t3 

LK.L 

1 

It 
17 
lb 
19 
32 

SUHKOUTIM HINSCH ( ARRAY. LENGTH. X. LOOKUP. ERROR I 

HAlM bDUHLL li:XT 

bUuHOtTli\E biKSCH ( ARRAY« LENGTH. X. LObKL'P. ERROR > 
INITIAL ( 1 .LT. LENGTH .ANCJ. sOHTLL ( ARItAY. LENGTH ) .AND. ( 

•ARRAY ( 1 ) .LE. X «ANL» X .LT. ARRAY ( LENGTH ) ) » 
K = 1 
N = LEI.61H 
LRROR ■ .FAL6E. 
WHILE ! K ♦ I .LT. N > 
ASSERT ( ( M .LT. * .ANQ. sCRTkC ( ARRAY. LENGTH > ) .Ai„ü. ( ( 

•AHRAT ( ¥   }    .LE. X .ANC X .LT. ARRAY (Nil .AND. .NOT. ERROR > 
• » 

VERIUCATION CUNliTlON        S^ÜROüTlNE BINSCH {   ARRAY, LENGTH, X. LOOKUP, ERROR ) 

LINE    VERIFICATION CONCITION 

19    1 .L(. LENGTH .AM). SCRTEU ( ARRAY • LENGTH > «ANC. ARRAY ( 1 ) .LP. X 
.AIJU. X «LT« ARRAY ( LENGTH ) 

AND 

19    1 « 1 .GE. LENGTH 

—— IMPLIES — - —————,.— 

92    1 .LT« LENGTH .ANC. SORTED ( ARRAY . LENGTH ) «ANC. ARRAY ( 1 ) .LF. X 
.AND* X .LT. ARRAY ( LENGTH > .AND. .MOT. .FALSE. 

> 

VC6.PATH=2.1.3 SUBROUTINE aiNSCH ( ARRAY, LENGTH, X, LOQKliP. ERROR > 

PROOF OF VERIFICATION CONDITION COMPLETED 

VCG.PATHs2.3t0 SUCKOUTINE HINSCH ( ARRAY. LENGTH, X, LOOKUP. ERROR I 

LINE 

19 

PATH SOURCE TEXT 

WHILE 1**1   .LT. N ) 
ASSERT I ( M .LT. W .AND. SORTED ( ARRAY« LENGTH ) ) .Ar.Ü. ( ( 
»ARRAY ( * ) .LE. X .ANt. X .LT. ARRAY ( N ) ) .AND. ,MCl. ERROR ) 
• ) 

33 IF ( X .NE. ARRAY ( * ) ) 
30 « 1)       .  FINAL ( .NOT. ERROR .ANP* X .EC. ARRAY ( LOOKUP > .OR* ERROR ) 
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( 

,   f I 

VtRlPICflTlOM CONCITION       SUUKOuT HMC BINiCH ( ARKAy, LENGTH. X. LOOKUP. tRROH I 

LINE    VLKiriCATlUM CUNUlTiUM 

19    f   *   i   ,Ql,   N 

AND 

32 M ,LT« N »ANOi SOHTLC ( ARRAY . LCNbTh ) .ANC ARHAY ( H > .LE. X .AND 
. X .LT. AHhAY ( W I «ANC» «NOT. l.RHOM 

ANü 

33 X .NL. ARRAY ( H   > 

  IHPHES  -  

38    ( «UOT. .TRUE» «ANO* X .Ew. ARRAY ( LOOKUP 1 ) .UK. .TRUE. 

vLG.PATh=2.3«ti SOUROUTIKE UlMbCH ( ARRAY. LENGTH. X. LOOKiiP, ERROK I 

PRCOF OF VERIFICATION LOKOITXON CÜrtPLtTEU 

VLG.PATH=2 3 9 

LINE 

19 
32 

33 
38 

SUUKQUTIKE blUbCH < ARRAY« LENGTH. X. LOüKuP, ERROR ) 

PA1H SOLHCE TEXT 

*HiLE ( f ♦ 1 .LT. N ) 
ASPEKT < ( M .LT. N ./MvU. SUBTtO ( ARRAY, LLNbTH ) ) .AUD. ( ( 

»ARRAY ( H$  ) .LE. X *hhü*   X .LT. ARRAY ( N ) ) .AND. .NOT* ERROR ) 
• ) 
IF ( X .KE. ARRAY (Ml) 
FINAL   (   .NOT.   ERROK   .ANC>   X   .Eu.   ARRAY   I   LOOKUP   )   .OR.   FRROR   ) 

vtRIFIi.ATHJl4  CONLITlCh S^ÜROUI IML   BIlJSCH   (   ARRAy,   LENGTH,   X,   LOOKtiP,   ERROR   > 

LINE VERIMCATION  LONCniON 

19 H   *   1   .(,£•   h 

ANU 

32 M .LT. K .ANC. SORTED ( ARRAY . UENGTH ) .AMC* ARRAY ( M t .LE. X .AND 
. X .LT. ARRAY ( N > .AND. .NUT. L'RROR 

ANÜ 

33 X .Efa. ARRAY ( * i 

«•**•«««•*•   IMPLIES   ••••••••••••• —■••••-•"••••••*<••••••• •••"••■■•••••••••* 

J 

38    ( .NOT. ERROR «ANÜ* X .Eg. ARRAY ( f* ) > .OR. ERRCP 

o 
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VtG.PA7K=2.J.y SUUKOUTINb blNSCH ( ARHAY« LLNbTHf Xi LOOKliPi IRHCH   I 

CLALSC    VLKIFICATICN CCNCITlON 

1 X - /»MAY ( N ) .tT> 0 

ANÜ 

2 .NCIt fcHROH 

ANU 

3 SCHILD ( ARKAt « LENGTH ) 

ANL 

H    X - ARRAY < M > .«-Ö. 0 

ANO 

5 * N ♦ II «6C« •! 

AMQ 

6 • M ♦ f .LT. 0 

>    - X ♦ AKKAT ( I« ) .L£. 0 

 im-Lits —--——— — —-. 

S    CRKOK .CR. ( •KOT* ERROR .AND« X - ARRAY ( M ) «EU. 0 1 

ENTEREL LXPRESS10N 

ERRCR = .TRUE. 

RLLE EhROR s .TRUE. 

REPLACE EHROK = .TRoE. 

RtPLACE tRRCH s .TRUE. 

REPLACE   EHROR ' .TRUE. 

1 

vLG.RCfiACS. SU0R0UT1NE BlNSCH ( ARH.iY. LENGTH« X« LOOKiiP, ERRCR > 

PROOF OF VERIFICATION CONDITION COMPLETED 

) 
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I ( 

0 

VtG.PATHs^täi'i 

LIM 

19 
32 

3J 
36 

SUl'KüuTIt'.f blNbCH ( ARKAy, LENGTH, X« LOOKliP, LRROH ) 

HA1H SUUHCE TLX1 

AliiLE   (   f   ♦   X   .LT.   N    ) 
ASbtrtT    (    «   K   .LT.   H   .(.NC.   SüriTtO   »   AHHAY»   LLNtoTH   )    )    .AtgO,    l    ( 

• AKKAT    (   1»    )    .Lt.    X    .Al.U.    X   .LT.   AhKAY    (   N    >    )    .AWO.    .NOT»   CHRCH   ) 
*» 
iF ( x .IU. AKHAT I v ) > 
FluAL ( .NOT» LftROH .AND. X »Ea. AKKAy ( LOOKuP ) .OR. rRROR ) 

VtRIFlCATlON CONLITION       SUÜROUtlNi BUSCH ( ARRAY. LLNGTH. X. LOOKuP. ERROR ) 

LINE    VtRlflCATlÜN CONDITION 

19    W ♦ 1 .OE. ('. 

ANU 

32 K .LT. N .ANÜ. SORTED ( ARRAY . LLNGIH ) .AigD. ARhAY ( M ) .LE. X .AND 
. X .LT. ARHAv ( u ) .AND» .NUT. ERROR 

AND 

33 X tCO« ARRAY '. m l 

 •«••- IMPLIES -  ———— 

36   ( .NOT. ERROR .AND. X .EQ. ARRAY (KL) .OR. ERROR 

*;»# 
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VtG.FMH = i:i3«9 SUbKOUTIKC   BIUSCH   (   ARhAYi   LENGTH«   X«   LOOKUP,   CRROH   ) 

CLAUSE VERUICATICN   CONDITION 

1 X   -   ARHAY   (   N   )    .IT,   0 

AND 

2 «KOT.   EhROB 

ANC 

3 SORTED   (   ARRAY   «   LENGTH   ) 

AND 

H X   -  ARRAY   (   M   )   .EQ.   0 

AND 

5 -   N  ♦  F   .6E.   -X 

AND 

$ -  N  ♦  K   .LT,   0 

AND 

7          -   X  4   ARRAY   (   *   )   .LE.   0 

........ IKHLiES —  

6 ERROR   .OR.   I   «NOT«  ERROR   «AND.   X 

ENTERED  EXPRESSION 

ERROR   =   .FALSE. 

RLLt ERROR  s   .FALSE. 

REPLACE ERROR ■ .FALSE. 

REPLACE ERROR * .FALSE. 

REPLACE       ERROR  >   .FALSE. 

.  ARRAY   (   M   >   «CO«   0   ) 

1 

VCC.RCKACE. SObROUTUE   blNSCH   (   ARRAY.   LENGTH«   X«   LOOKuP«   ERRCK   > 

PROOF   OF  VERIFICATION  CONDITION  COMPLETED 
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' (" 
\(CG«PATh:3i2«i«f2 SUtlhOUTll-t   BlNSCH   (   ARHAYI   Lt^GTH,   X.   LOOKllP.   fcRRCrt   » 

19 
iO ( 1) 

21 ( 1) 
2? ( 1) 
il I a) 
30 ( i) 
il 
19 
20 1 it 

HATh SOUUCE TEXT 

KHILL   (   f   ♦   1   .LT.   N   ) 
.      ASSCRI    (    i   K.    ,LT.   N   tAWO.   Sf/HTtD   (   ARRAY.   LENGTH    >    )    .ANL.    (    ( 

»,      ARRAY   (   K   )    ,Lr-    X   «ANÜt   X   .LT.   ARRAY   (   N   )    i    .AND.    .NOT.   ERROR   ) 
♦.      ) 

.      I   =   (   *   ♦   M   !    /   2 

.      IF   (   X   .LT.   ARRAY   (   I    )    ) 

.      •     N a   i 

.     INC1F 
LNUOHILC 
MhlLt   l   K   ♦   1   ,LT.   N   ) 
.     ASSLRT   (   (   N   .LT.   N   .AND.   SORTED   (   ARRAY.   LENGTH   )   )   .ANC.   (   ( 

*.     ARRAY   (   M   >   .LE.   X   .AND.   X   .Li.   AÜRAY   (   N   I    )    .AND.   .NOT.   ERROR   ) 
".      > 

o 

o 

VtRIFlCATIÜN   CONClTlOr, SUBRCOTlKE   BlMSCH   i   ARRAY,   LLNGTh,   X,   LOOKUP,   ERROR   » 

LINE VERIFICATIUN  CONDITION 

19 M   ♦   1   .LT.   N 

ANC 

20 M   .LT.   N   »AND.   SORTED   (   ARRAY   .   LENGTH   )   .A^D.   ARhAY   (   M   >   .LE.   X   .AND 
•   X   .LT.   ARRAY   (   N   )    .ANL.   .NUT.   ERROR 

AND 

22 X   .LT.   ARRAY   (   (   M  ♦   N   )   /  2   > 

19 * *  I   .LT.   (   M  ♦  N   >   /   2 

........   IMPLIES  ———.-------..-- 

20 M   .LT.   (   K   ♦  N   )   /  2   .AND»   SOKTEü   (   ARRAY   ,   LENGTH   )    .AND.   ARRAY   (   M   ) 
.Lt.   X   .AND*   X   .LT.   ARRAY   (   (   M  4  N   )   /  2   )   «ANc.   .WOT.   ERROR 
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VtG.FAThsS'S«1*'« SUBKOUTllvE   BlNbCH   J   A«HAY.   LtMGTH.   Xt   LOOKUP.   ERROK   ) 

CLAUSE 

1 

VEHIFICATION CONDllION 

X - AKKAt ( N ) .LT. 0 

ANC 

2 MvOl. tHROH 

AND 

3 SORTED ( ARHAY . LENGTH ) 

ANC 

H X - ARRAY ! I N f H ) / 2 I .LT. 0 

AND 

5    » H * P   .LT. -1 

AND 

f, - X * Af*RAY ( K i .LC. 0 

AND 

7    -((N*>'»/2»*M .LT. -i 

  IMPLIES - " --" 

9    -((N*P)/2i*M ,LT. 0 

ElJTEREL LXPHESSICN 

Pxl «LI. 0 s PXl .LT. • 1 .OR. PXl .Eb. - 1 

RLLE      PXl .LT. 0 s « PXl ,LT. -1 .OR. PXl •(«« -I » 

RtPLACE   X - ARHAY « N » »UT« 0 « < X - ARRAY t N 1 .LT. -i .OR. X - ARRAY < N 
) .Eb. •! ) 

REPLACE   X - ARRAY 1 ( N ♦ * > • 2 ) .LT. 0 c ( X - ARRAY I « N ♦ M ) / 2 » .LT 
. •! .OR. X • ARRAY < ( K ♦ M > / 2 > .EO. -1 i 

rtEPLACE   •« I fc ♦ « » / I I ♦ K .LT. 0«-i (N*M>/a)*M ,LT. -I .f)R. 
•< ( N > K » / 2 ) ♦ M .Eft, -1 

SAVED AS AXIOM   1 

) 
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t c VCGiAXIC*. 

CLALSE 

1 

o 

SUüKC/UTIKE BINiCH ( ARRAY, LENGTH. X. LOOKUP, t«ROh ) 

VENIMCATICN CONDITION 

I X - ARRAY < N   }   .IT. -1 .OR. X - ARRAY ( N > .E6. -1 ) 

AND 

•MOI. ERROR 

AKÜ 

SUKTEC ( ARRAY i LENGTH ) 

ANU 

t X - ARRAY ( ( N ♦ M » / 2 ) .LT. -1 .OR. X - ARHAY C « N ♦ M ) / 2 ) 
.Eu. -1 ) 

AKÜ 

- N ♦ K .LT. -1 

ANU 

- X ♦ ARRAY « * ) .LE. 0 

AND 

-< t A « H I / I » ♦ H .LT. -I 

"    IWLIES — — ---- . mmmmm .... —..._ 

-<(N*»«>/2)tn .LT. -1 .OR. .( ( N ♦ M t / a I ♦ M .EQ. -1 

o 

tKTEREC EXPRESSION 

PXI .ll-P. PX2 .OR. PX3 s ( Pxt .ICP, PX2 ) .OR. ( PX1 .IMP. PX3 ) 

RLLE      < Pxi »IMP. P*a .OR. PX3 ) s ( ( Pxl .IKP. Px2 » .OR. I PXI .IMP. PX3 
) ) 

REPLACE   ( ( X - ARRAY ( N J .LT. -I .UR. X - ARRAY ( N » .EO. -1 ) .ANC. .MOT. 
ERROR .ANC. sOHTLD ( ARRAY , LElvGiH ) .ANO. ( X - ARRAY < ( N « N ) / 

2 » .LT. -1 .OR. X - ARRAY < ( N ♦ M ) / 2 ) .E«. -1 ) .ANO. - N ♦ H 

.UT. -1 .ANL. - X ♦ ARRAY J M » .LE. U .A^O. -( «N*M)/2)*M, 

LT. -1 .IMP. -( «N*M»/2J+M .LT. -1 .OR, - » I N ♦ M ) / 2 ) 

♦ M .EC. -1 ) = ( { ( X - ARRAY ( N ) .LT. -I .OR. X - ARRAY < N J .EC 

. -i » .ANC. .NOT. ERROR .AND. SCRTEU i ARRAY . LENGTH ) .ANO. i X - A 

RRAY < « N ♦ M ) / 2 > .LT. -i .CR. X - AhRAY ( < N ♦ M » / 2 » .Ee. - 

1 » .ANC. - N ♦ M .LT. -1 .ANO. - X ♦ ARRAY ( H J .LE. 0 .ANO. - < « N 

♦ ^ ) / 2 > ♦ M .LT. -I .IMP, .( (N«M)/2)«K .LT. -J » .0«. 

( ( X - ARRAY ( N I .LT. -1 .OR. X 
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SA'.EC AS AXICC   2 

wtGtA^If^ • SUBRCUTll.t BlNi>CH ( ARHAy, LLMGTH« X, LOOKuP. tRBOH > 

PHQCf   OF VEHIFICATICN CCMüITION COWHLETEO 
USING THt FULLOhlNb AXIOMS        1    2 

Vt6.f)ATHr'4i2.i,,6ti SUüHCüTlKt EliUsCH t ARHAY, LihtfH. X« LOOKuP, ERROR ) 

LIKE PATH SOURCE TEXT 

19 ntULL ( f ♦ 1 .LT. N ) 
iC ( 1»      .  ASStRT ( (.« .Ll« (> »AWO« SUHTEO ( ARRAY, LENGTH ) ) tANC« I ( 

*.  ARRAT ( M ) .LE. X .ANC. X .LT. ARRAY ( IM ) ) .AND« .NUT. ERhOR ) 
•.  ) 

21 ( 1)      .  I = ( ^ « N ) / 2 
22 ( 1)      .  IF ( X .LT. AHHAY ( I ) > 
8«! OH1F ' X .6T. AR^AY ( I ) » 
25 ( 1)      .     *   =   I 
3Ü ENOIF 
21 E^LMHILE 
19 MHiLE ( * ♦ 1 .LT. N ) 
20 ASbtrtT I ( M .LT. N .AND. SORTtD ( ARRAY« LENbTH i ) .AND. < ( 

♦ARKAY I f   )   iLC« X .AND. X «LT. Ah«AY ( N } ) .AND. .NOY» ERROR > 
• ) 

ViRIFICATlON CUNLXTION       SUÜROUTK-E BINSCH ( ARRAY, LENGTH« X« LOOKuP« ERROR > 

LINE    VERUXCATION CONDITION 

l»    * » 1 .LT. N 

AND 

20    M .LT. N .AND. SORTtU ( ArtRAY « LENbTH I .AND* ARKAY ( M I .LE. X .AND 
• X .LT. ARRAY ( N ) .AND* .NOT* ERROR 

ANü 

22 X   .6E.   ARRAY   (   (   M  4   N   I   ,'  2   | 

■ 

jUMi 

2<l X   .GT,   ARRAY   (   (   h  *  N   )   /  2   I 

ANC 

19    ( ( * ♦ N ) / 2 » ♦ 1 .LT. N 

IMPLIES 

20    t K ♦ N ) / 2 .LT. N «AND* SOKTEC ( ARRAY • LENGTH ) .AND* ARRAY ( < M 
* N ) / 2 ) .LE. X .ANÜ. X .LT. ARRAY ( N ) .AND. «NOT. ERROR 
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( 

o 

o 

Vl-G,i-aTH = l«t<i,b,fc,ü SUÜMOOVINE BlNSCH ( ARHAY, LENGTH, X, LOOKUP, ERROR ) 

CLAUSE    VEKlFlCATlOu CONCITICN 

1 X - ARRAY ( N ) .LT* 0 

ANU 

2 .r.CT. ERROR 

3 SLHTLC < ARRAY , LENGTH ) 

ANO 

i»    X - ARRAY < ( N ♦ * ) / 2 > .GT. G 

ANO 

5 - N ♦ P* ,LT. -1 

ANO 

6 - X 4 ARRAY ( H   )   .LE. 0 

ANO 

7 -N*(lN*t»)/2) ,LT. -1 

—— IMPLIES -—•—■- - ——,—_._— 

a   •N«1(N«M)/ti .LT. 0 

ANO 

9    • X 4 AnrtAY ( ( N ♦ M ) / 2 ) .LE. t» 
I 

ENTERED EXPHESSIUN 

PXl .LT. o ■ pxi .LE. - i 

RtLE     Pxl .LT. 0 s PXl .LE. -1 

REPLACE   X « ARHAY < N » .LT. 0 s X - ARRAY « N » .L£ . -1 

REPLACE   -N+l (N4K)/2) .LT. ü = - N ♦ ( { N ♦ * j / 2 J .LE. -1 

. 
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VLO'HEPLACC. SWüHOUmt   BlNbCH   (   A«HAlf,   LtNGTH.   X.   LOOKliPi   tRRCh   > 

CLALSE VLRIMCATICN   tCNCUlCN 

1 X   -   ARHAY   (   N   )    ttC«   -1 

ANO 

2 »KOT»   tKROR 

AM, 

3 SCJHTtD   (   AHNMY    «   LtNGTH    ) 

ANU 

4 A   -   AHKAr   (   (   K   «   M   )   /   2   )    .ST.   0 

AN*; 

5 -  N   ♦  f.   .LT.   -1 

AftU 

6 •  X  ♦   AhKAY   (   f    >    .LC.   0 

AUL 

7 -N*((N**l/8)   .tT.   -1 

>--_ — .—    ihHLltS . — — _--   mmmmmmmmmmmmmm 

6 -N*{^H**i/^)     »kC«    -1 

htm 

9 -   X   ♦   AKHAY   I    (   N   ♦   M   )   /   2   )    *tC<   0 

ENTERIC- EXPHtSSlCN 

PxX .ANC. Px2 .LT. - X .IMP. fx2 .LE. - 1 .AND. Px3 = PXl «AND. PX» .LT» 
P. PX3 

RULE      « PXl .AND. HA2 .LT. -X .IMP. PX2 .Lt. 'X .AND* Px5 / = ( PXX IANO. PX 
2 .LT. -1 «IHP. PX3 » 

RtPLACL   < X - AhRAT ( N » .LE. -X .ANU. .NOT. LRRflB .A?.C. SOhTEO ( ARRAY . LLN 
GIH J .AND. X - ARRAY ( ( N ♦ I» ) / 2 ) .GT, ü .AKC. - N ♦ K ,LT. -X . 

AND. - X ■» ARRAY ( f ) .LE. 0 .ANC. -N*< (M*W»/2) .LT. -1 .1 

HP. - N ♦ < ( N ♦ f » / 2 > .LE. -X .AhC. - X ♦ ARRAY ( ( N ♦ * ) / 2 

) .LE. 0 ) = « X - ARRAY » N ) .LE. -1 .AwC .NOT. ERROR .AND. SORTED 

( ARRAY , LENtoTH I .AND. X - ARRAY J ( N ♦ M > / 2 > »GT. 0 «AND. - N 

♦ I» .LT. -X .AND. - X ♦ ARRAY ( V   » .Lt. 0 .AND. -N*<<N*M)/2 

) .LT« mi   .IMP* » 1 <♦ ARRAY » ( N ♦ H J / 2 » «LE. 0 ) 

1 .IM 

") 

) 

D-38 



( 
VUG.REPLACE. SUBROUTINE   BlMSCH   (   ARRAY.   LENGTH,   X.   LOOKUP,   ERROR   ) 

CLAUSE VERIFICATICN   LONCUION 

1 X   -   ARRAY   <   N   )   .L£.   -1 

AtiQ 

2 .NOT.   EHROH 

ANU 

3 SCRTEC   (   ARRAY   «   LENGTH   ) 

ANO 

<t X   -   ARKAY   <    i   t*   *   H   I   /   2   )   .61.   0 

ANO 

5 -  N  ♦   H   .LT.   -1 

ANO 

6 -   X   ♦   ARHAY   CM    >    .Li.   0 

ANU 

T -N*((N*K)/2)   ,LT.   -1 

 IMPLIES - ——  

a -   X   ♦   ARRAY   <    «   M   ^   f   >   /  2   )   ,LE.   0 

ENTERED  EXPRESSION 

Pxl   ♦  P>2   .LE.   0   a   -   PXi   -  Pxü   .6E.   0 

RULE PXl   ♦   PX2   .LE.   0   a   -   PXI   -   PX2   .tt.   0 

REPLACE       -  X   -»   ARRAY   (   H   )   .LL.   0  a  -  -  X  -  ARRAY   I   H   )   .GE.   0 

RtPLACE       -  X   «   ARRAY   (   (   N   •»   f   I   /  2   )   .LE.   0   a   •   -   X   -  ARRAY   (   (   N  *  K   >   /  2   t 
.GL.   0 

O 
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VtGtREPLACE. SUtJHCUTIUL BlNSCH ( ARHAy, LENGTH, X. LOOKUP. ERROR ) 

UAUSE    WEKIFICflTlON CONDITION 

1 X - ARRAY ( N > .LE. -1 

ANÜ 

2 .NOT. ERROR 

AM) 

3 SCHILD J ARKAT t   LE^GTH » 

AND 

14    X • ARRAY ( I N ♦ K > / 2 ) tüT« 0 

ANC 

«    - N ♦ (* .LT. -1 

ANC 

6 X - ARRAY ( M ) .(iE. 0 

AND 

7 -N4((N*>«)/2) ,LT. -1 

  IkPLltS  --• ———-———- 

8 X - ARRAY ( ( N -» K ) / 2 ) .()E. 0 

ENTEREC EXPRLsSlON 

PX1 .GE. 0 s PX1 .01» 0 .OR. PXl .Cd. U 

RtLE      PXl .GE. 0 s ( PXl .bT. 0 «OR. PXl .EQ. ü > 

RtPtACt   *   - ARRAY « M » .6E. 0 * I X - ARRAY ( M » .ST. \)   .OR. X - ARRAY < M » 
.EC. C ) 

RtPLACE   X - ARRAY ( ( N ♦ W » / 2 ) .GE. 0 « X - ARRAY i ( N ■» M > / 2 ) .riT, 
0 .OR« X • ARRAY ( ( N ♦ M » / 2 ) .EO. 0 

I 

) 
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I  CJ •«'-Gif>EHLACt, SUBK0UT1NC BINÜCH ( AHHAt. LtNbTH, X« LOOKIIP, tRRCh ) 

0 

CLAUSE VLMHCATlCN   CONDITION 

1 X   -   ARKAY    (   N    )    ,Lt.   -1 

AM; 

2 .lüCTi   CHHOH 

3 ScMtü   (   ARKAT   •   LENGTH   ) 

ANü 

H X   -   ARRAY   I    <   N   *   P   )   /   2   )    .bT.   0 

ANC 

8 - N ♦ *   .LT.   -1 

ANU 

£    IX- ARRAY 1 M ) .6T. 0 .OR. X - ARRAY I P   I .EQ, 0 ) 

AND 

7    -N*<<N*t«»/2» ,11,   -1 

 ——-- IKHULS — --   

X - ARRAY I t N ♦ K » / 2 » .GT. 0 .OR. X • ARRAY C ( N ♦ M ) / 2 I .E 
0. 0 

USING AXIOM  2 

RtLE 

REPLACE 

( Pxl .IMP. PX2 .ÜR. PX5 ) s ( ( Pxi .IMP. PX2 ) .OR. ( PX1 .IMP. PX3 
) ) 

( x - ARRAY ( tv ) .LE. -1 ,MU,   .NOT. ERROR .AND. SORTED ( ARRAY i IEN 
GTH ) .AND. X - AKRAY ( ( N > M > / 2 ) .GT. 0 .AND. - N ♦ M .ET. -X . 

AND. ( X - AKMAY ( M ) .GT. 0 »OR. X • ARRAY I M > «EO. 0 > »AND. - U 

«4 ( N « P > / 2 ) .ET. -1 .IMP. X - ARRAY ( ( K ♦ M ) / 2 ) .GT. 0 . 

OR. x • ARRAY ( ( N « M ) / 2 ) .Eä. o » = < ( X > ARRAY ( N ) .EE. -1 

.AND. .NOT. ERRCR .AND. SORTED ( ARRAY • LENGTH ) .ANU. X - ARRAY ( ( 

N ♦ M I / 2 ) .GT. 0 .AND. . N * M .LT. -1 .AND. ( X - ARRAY ( M > .6 

T. 0 .CR. X - ARRAY ( H » .LO. 0 ) .ANL. .N*<(N*M)/2).|T. 

•1 .IMP. X - ARRAY ( ( N ♦ M > / 2 ) .GT. 0 ) .OR. ( X • ARRAY ( N ) . 

LE. -1 .AND. .NOT. ERROR .AND. SORTED ( ARRAY • LENGTH > .AND. X - ARR 

AY « ( N ♦ M » / 2 ) «GT. 0 «AND. - N ♦ M .|.T. -1 .AND. ( X • ARRAY ( 

o 
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VtG.A^lljN .ü, SUBKOUTINE   I'lNbCH   (   ARHAY.   LUBTHI   X,   LOOKUP,   tRROH   I 

FMCCF   ÖF   VEH1FICAT10N   CONDITION   CCMPLETEL) 

LbiKG   TMt  FOLLOWING   AXIOMS i 

VLG.PAThS^'S'S.V.Ü SUbROUTINE ÜINbCH < ARHAy, LENliTH, Xi LOQKuP. ERRCH ) 

Lira 

20 I 1) 

21 ( 1) 
22 ( 1> 
2<4 < 1) 
2« 
27 ( 1) 
26 ( 1) 
29 ( 1) 
30 
31 
19 
20 

PATH SOURCE TEXT 

WHILE ( * ♦ 1 .LT. N ) 
.  AS^Lhl ( ( M .LT. N .ANn. SORTED ( ARRAY, LENGTH ) ) .ANC ( ( 

..  AMAY I K I .LE. X .ANCJ. X .LT. ARRAY t N J ) .AND. .NOT. ERROR ) 
*.  ) 

.  I = ( K ♦ N ) / 2 

.  IF ( X .LI. ARRAY (III 

.  CRIF I X .6T. ARRAY II)) 
ELSE 
.  LOOKUP ■ 1 
. ¥   -   I 
.  N = I ♦ 1 
ENÜIF 
ENthHlLE 
»HILE ( K ♦ 1 .LT. N I 
ASSERT ( ( K .LT. H   .AND. SORTtO < ARRAY. LENtiTH ) I .AND. « ( 
•ARRAY ( f I .LE. X .AKC. X .LT. ARRAY (Nil .AND. .NOT. ERROR ) 
•) 

VtRlFXCATlDN CONDITION     SUBROUTINE BIMSCH ( ARRAY, LENGTH. X, LOÜKüP, ERROH » 

LINE    VERIFICATION CONDITION 

19 * ♦ I .LT. N 

AND 

20 H .LT. N .AND. SORTED i ARRAY , LENGTH ) .AND. ARHA1 < N ) .LE. X .AND 
. X .IT. ARRAY ( N I .AND» .KUT. LRROR 

AND 

22    X .GE. ARRAY I t H ♦ K I / 2 ) 

AND 

2X    X .LE. ARRAY ( I M ♦ M I / 2 ) 

}.9    | « « ♦ « » / I I ♦ 1 titt I t » ♦ N I / « I ♦ » 

  IMPLIES   -  

20 { * * h ) / 2 .LT. ( ( K ♦ N ) / 2 ) ♦ 1 .AND. SORTED ( ARRAY « LENGTH 
I .AND. »HhAY ( ( f ♦ N I / 2 ) .LE« X «AND* X .LT* ARRAY ( ( ( M ♦ N 
I / 2 > * 1 I .AND. «NUT* ERKCR 

) 
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ü yt>Gif-ATH*4«a«8«7f< SUbSOUTiNE ülN&Ch ( ARHAf. LLN&TH, X, LGOKl.P. CRROR ) 

PRCCF OF VLNlflCAUCN COKDITION COMFLLTro 

V(-GiPATfsJi2i««S SUBKOUTIM: BIMSCH ( ARHAY, ULNGTH, X. LOOKUP, E«KOK > 

LlKi 

19 
20 ( 1» 

2i ( 1) 
22 ( 1) 
2i ( 2) 
«0 ( 1) 
81 
19 
12 

KA!H   SuUHCt    ILXT 

hHJiC   (   K   ♦   1   .LT.   N   ) 
.     ASSt-hT   <    <   M   .LT.   N   .ANC   SOHttD   (   ARHAY.   LENGTH   f    )    .ANC»   (   ( 

*.     ARK^v   (   M   )   .LE.   X   .ANC.   X   .LT.   ARRAf   IN))   «AND*   .NOT.   ERROR   ) 
*.      ) 

.     I  s   t   P   ♦  N   )   /  £ 

.      IF   I   x   .LT.   ARRAY   (   I    )    ) 

.     .    N «  I 

.     ENCIF 
LNtWhIt.E 
»iHILL   l   f   ♦   1   ,i.T.   N   ) 
AäbERT   (    (   f.   .LT.   H   .Ar,C.   SORTED   (   ARRAY.   LENGTH   )   )   .AND.   |   ( 

«AKKAY   (   V   )   »tC*   X   .ANC.   «   .LT.   ARRAY   (   N   )   )   .ANO.   .NOT.   ERROR   ) 
• ) 

0 

o 

VtPIFlCATlON  tONLlTlCf. SUBHOUTlNE   ölNüCH   (   ARRAy,   LLNGTH,   X.   LOOKlrP.   ERROR   » 

LXNf VERIFIC. TlO<«   C0N0IT1CN 

IS ^   ♦   1   ,LT.   N 

AMO 

20    * .LT. fv .AI.O. SCHTEÜ ( AHaAY . LENGTH ) .ANL. ARRAY I M » .LE. X .AND 
• X .LT. ARHAY ( N ) .Al.tj« .NuT. ERROR 

AhC 

22    X .LT. ARRAY I ( M * N ) / 2 | 

AMU 

19    » ♦ i »ftg* ( M ♦ N ) / 2 

........ iKPLIES • 

32    »« .LT. ( K « N ) / 2 .AND. SORTED ( ARRAY . LENGTH ) .ANU. ARRAY < M ) 
.LE. X .AND. X .LT» ARRAY < ( M « N ) / 2 ) .AND. .NOT. ERROR 
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VLG«P/>TH = 3I2I>4>3 SUbKCUTlKt blNÜCH ( ARHAYt LENGTH« X. LOOKliP. ERROK ) 

CLAUSE    VtHlMCATlCN tONCXUCN 

1 X - AKKAY ( N ) .LT> 0 

AND 

2 »NOT« cHHOH 

MO 

3 SCRTCC I ABRÄT « LENGTH ) 

ANC 

i«    X • ARMAY ( ( N ♦ f« > / 2 ) .LTt 0 

ANU 

5 - N ♦ ^ .LT. -1 

ANL 

6 - X « AHHAY I M ) .LE. ü 

ANO 

7 »ithttiti)**   ,GE. -1 

—  UPLiES — —  — 

fi    -((N+*)/2)*M ,LT. 0 

ENTEREü EXPRESSION 

■ N ♦ M .6E. . 2 

RLLE      -((N*t'»/2)*M .GE, -X B - N ♦ « .GE> -2 

RtPLACE   - « « N 4 >< ) / 2 ) ♦ M .GE. -1 s , N ♦ K .&E. -2 

SAVED AS AXICf   S 

^(N4f)/2)4M   .GE.   -   1 

) 
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VtG.ÄXlCf. SUBRCUTIf'.E BIUSCH ( ARKAy, LiNGTH, X. LOOKnP. ERROK ) 

o 

CLAUSE    VLRIMCATIQN CONCITlüN 

1 X - AHhAY ( N ) .LT. 0 

ANC 

2 «NOT. U<KOh 

ANC 

3 SCKTCO ( ARHAT i LEKGTh ) 

AHO 

H    X - ARRAY < t h ♦ C ) / 2 ) .LT. 0 

ANU 

5    - N ♦ K .LT. -1 

ANO 

£    • X « ARRAY ( P j .LC. 0 

AMfi 

7    - N ♦ P .6L. -2 

 IKPLiES  

e    • I ( M ♦ *> I / I ) » fl .LT. 0 

EMCRCC t'Af'RtsSIOK 

Pxl .LT. - 1 = Pxi .U. - 2 

RLLE      PXI .LT. -1 s PXi .Lt. -8 

RtPLACE   - hl ♦ C .LT. •! • • Jk * M «LE. -2 

SAVEO AS AXICK   H 

O 
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VtG.AXXCf'« SUBROUTINE   blMSCh   (   ARRAY.   UNGTH.   X.   LOOKUP,   ERROR   » 

CLAUSE VER1FICAT1CU   COUDUICN 

1 X   -   «RRAY   <   N   )   .LT.   0 

ANL 

2 .NCI.   ERROR 

ANU 

3 SCRTED   (   ARRAY   i   LENGTH   ) 

ANU 

14 X   -   ARRAY   <    (   N   ♦  >   )   /  2   )   .LT.   0 

AND 

5 -   U   *  #   .LE.   -2 

AMD 

6 -   X   ♦   ARRAY    (   *   I    .LE.   0 

AMU 

7 -  N   ♦  K   .6E.   -2 

....... 1KPLUS " " -..--• 

6 -«(M»I»)/2)*K   .LT.   0 

ENTEREt   EXPRESSION 

• H  ♦ >   .LE.   -   2   .AM).   Pxl   .AND.   -   N   ♦  K   .6E. -   2   s  -  N  ♦  M   .EC.   -   2   .AND.   Pxl 

RLLE (   • Ik ♦ K   .LU.   -2   .AhC.   PXX   »   =   «   -   N   ♦  »•   .EC   -2   .AND.  PX1   ) 

RULE 

NO  REPLACEKEKTS  PEHFORHEC 

ENTERED   EXPRESSION 

N   s   H   ♦   2 

H « < I # P I 

REPLACE N » 2 ♦ K 

REPLACE N a 2 ♦ K 

REPLACE N « t 2 ♦ K » 

REPLACE N a ( 2 -» K > 

REPLACE N ■ 2 ♦ M 

) 
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f 

o 

o 

VtG.REPLACE. SUBHOUTII.L blMbCH ( AMhAY. LENGTH, X« LOOKUP, ERROH ) 

CLALSE    VCRIFltATltN CCNUTIOM 

1 .NOT. LHHOH 

AND 

2 SOHTLC 1 AhhAT , LtlvGTM » 

ANÜ 

3 X - ARRAY ( 2 4 K ) .LT. 0 

ANU 

H    X - ARKAY ( ( 2 ♦ K ♦ M ) / 2 ) .LT. 0 

AND 

5 - X •» ARRAY ( I» ) .Lt. 0 

........... iKPLits —------.----.--..-....-..... 

6 -((2***K)/2)+M,LT.O 

ENTEREL EXPRESSION 

(<2*f*M)/2)=M+l 

RLLE      « (2*W*M»/ 2 ) = (!♦*) 

RtPLACE   i   2  +  H   *   »   ) / t ■ 1 ♦ M 

RtPLACE   iia*M«ll)/||«(l«K} 

VCG,REPLACE. SUbHOUTlMt   HINSCH   <   ARKAY,   LENGTH,   X,   LOOKliP,   ERROH   J 

PROOF   UF   VERlFlCATiON   LCMITION   COhPLtTEO 
LSINS   THE  FCLLOwINb  AxlOPS i H 

«CG,PATHS'*.2.5,6,3 SUC'RCUTIHE blNSCH I ARRAY, LENGTH, X, LOOKuP, ERROR > 

•-INE PATH SOURCE TEXT 

19 ftHILE ( >" ♦ 1 ,LT. N ) 
2U < 1'     .  ASSLRT ( ( K .LT. N .ANC SORTED < ARRAY, LENGTH » ) .ANO» ( « 

•.  ARRAY ( K | .LE. X .AND. X .LT. ARRAY ( N ) ) .AND. .NOT. ERROH ) 
«.  ) 

21 ( 1)     .  I s ( K « N ) / 2 
2? « 1)     .  IF ( X .LT. ARRAY ( I ) ) 
2** URIF ( X .GT. ARRAY ( I ) ) 
25 ( 1»     .  K « I 
30 ENblF 
31 ENObHlLE 
19 taHUE {   ¥   *   l   .LT. N ) 
32 ASSERT ( I K .LT. N .AND. SuRT£D ( ARRAY. LENGTH » ) .AND. ( ( 

•ARRAY ( f   1 .LE. X .AND. X .LT. ARRAY IN)) .AND. .NOT. ERROR ) 
•) 
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VtRlFlCATlW,   CUNtlTlCN sUbROUTlM.   ÜlNSiCH   (   ARKAY.   L£M,THI   X«   LOüKllPt   ERROR    I 

LINE VLXIFICATlCN   (.ÜUüITlUN 

19 M   ♦   1   .CT.   N 

ANU 

20 H ,LT. N »AND. SCHUO ( ARRAY • LEMOfH ) .AND. AR^AY ( H ) .LE. X .AMD 
• X .LT. ARRAY ( ti   )   .AUG. .NUT. ERROR 

AND 

22    X .G£. AfcRAY ( ( M ♦ N ) / 2 ) 

ANU 

24    X iGT* ARRAY ( ( M ♦ N ) / 2 ) 

AND 

19    ( I K « N ) / 2 > t 1 .6E. h 

........... iKPtiES ----"" — -"-. — . — - ................... 

32    ( M ♦ N ; / 4 .CTi N .ANC. SOKTtC ( ARKAY . LENGTH > .AND. ARRAY ( ( M 
4 N ) / 2 ) .LE. X •AMD. X .LT. ARRAY ( N ) .AND. .NOT. ERROR 

I 
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( W«.«,MtHMia.S,Äi3       SUOROUTIKC ülNSCH ( ARM». LtNGTH, X, LOüK.iP, ERRÜK » 

CLAtSE    VtHlUCATlCN CONDIIIÜN 

X    x - AKHAY ( U   )    .LT. 0 

A NU 

2 .NCI. ERROR 

A NO 

3 SORTED < ARRAY i LEN&Th ) 

ANU 

i,    X - ARHAY < ( N « M ) / 2 ) .*T« 0 

ANC 

5 - N ♦ K .UT. -1 

ANÜ 

6 • X 4 ARRAY ( f ) .LE. 0 

AMO 

7    -N*«<N*l»»/2» .Gf-. -1 

—— IfPUES  ——— 

e    - N ♦ ( { N ♦ f ) / 2 ) .LT. O 

tm 
9    . X * AhRAY ( < N ♦ K ) / 2 ) .LE. 0 

ENTERED EXPRESSION 

.N*t(N*>'»/2> ,GE. - I a - N ♦ N .6E. - 2 

RLLE      -N*( (N*W)/2» .GE. -| • - W ♦ P .tit, -2 

RtPLACE   -N*((N*f>/2> .6E» •!••«♦ # .6t. -2 

y 

o 
D-A9 



VLG.HEPL^Ct. SUBKOÜTlNt BINSCH ( »RMY. LLNtTh, X, LOOKuPi ERROR ) 

CLAUSE    WLHltlUniCh CONOITION 

1 X - ARrlAY ( U   )    .LT* 0 

ANlj 

2 «NOT» ERROR 

Al> 

3 SOK1LD ( ARRAY « UK6TH ) 

AND 

H    X - ARRAY ( i   h   *   H   )   /   2   )   .&T. U 

ANU 

5 - N ♦ f .LT. -1 

AND 

6 - » 4 ARRAY ( f ) .LC. 0 

ANC 

7 - N * P .GE. -2 

........... IMpLitS    

a    - N ♦ ( ( M « K > / 2 ) .Ll. O 

AND 

9    - X ♦ ARRAY I ( N ♦ * J / 2 ) »Lt. 0 

LSir.G AXIOM  H 

RLLC     Pxl .LT* -1 > PXX .LE. -2 

RtPLACE   - N ♦ K ,LT. -1 » - N ♦ H .LE. -2 

I 

) 
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c Vtg.Axic»'.'». SUBHOUTlivC   blNüCH   (   ARRAy,   LEN6TH,   X«   LOOKllP.   tiRROR   I 

; I 

CLAtSE    VERlFlCATlCn CONDITION 

1 X - ARRAY < N I •(.?• 0 

ANU 

2 »NOT. ERROR 

ANU 

3 SORTED ( ARRAY . LENGTH ) 

ANQ 

it    X - ARRAY ( ( N « K ) / 2 ) .ST. 0 

AND 

5 - N ♦ * .LE. -2 

ANU 

6 • X « ARRAY ( f   ) .LE. 0 

ANO 

7 - N ♦ f .6E. -2 

 -- 1MHUES •'-*-— ...*,. 

A no 

9.   •» X ♦ ARRAX ^ ^ N <! M H / 2 )> »U* 9. 

eiST;EReu ExpRtssioti 

N « K 4. 2 

RILE N > ( 2 * ' I, 

RtptACE N s 2 t M 

REPLACE N " 2 * M 

«tPLACE N » «, 2 <i »» », 

REPLACE 1 t 4 t ♦ » ■* 

REPLACE V a I 2 « K fc 

REPLACE Ü I %'M 

REPLACE N • 2 4 M 
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VtG'KEf'LACt. Sk-BKCÜTINE BIMSCH < AKRAY, LENGTH. X, LOOKUP. ERROR ) 

CLAUSE    VERIUCAJION LONOlTlON 

1 .NOT. EKRCH 

ANU 

2 SORILO < ARRAY . LtlsGfH » r 

AND 

i X - ARRAY ( 2 ♦ K ) .LT, 0 

AND 

it    X - ARRAY t ( 2 ♦ * ♦ K ) / 2 ) ,GT. Ü 

AND 

5 - X ♦ AHKAY ( H   ) .LE. 0 

— - — iKPLiES --"     

6 -K*((2***K)/2).LT.2 

AND 

7 - x ♦ ARRAY « ( 2 ♦ K ♦ M > / 2 ) .LE. 0 

ENTERLC LXPHLSSlOM 

( J2*M*M)/2»sH*l 

RLLE      < l2*H*M»/2)=(X*K) 

RtPLACE   I f ♦«**>/»•»♦ »» 

RtPLACt   ( If****»/!»»!.*»1 

RtPLACE   (2*M»t«>/2«l*K 

) 
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VtG.KEPuACt. SUBhOUTlNC   BlNäCH   (   ARHAy.   UNGTHt   Xt   LOOKltP«   tRKOK   ) 

0 

CLAtSE    VEKIFICATlCN CONCITICN 

1 .i\ÜT. tRROR 

AMU 

2 ScRUC ( ARRAY , LENGTH ) 

AND 

3 X • ARRAY ( 2 ♦ K ) iLT« 0 

AND 

H X - ARMY ( 1 ♦ C I .6T. 0 

ANC 

5    - X * AhRAY ( H   t   .LE. 0 

 iKPLltS - — " — — ---- — — . — ....... 

6       . X + ARRAY ( 1 « K ) .LE» ü 

ENTEREC; EXPRESSION 

. X ♦ AMRAY («!♦>•>) .LE. 0 s K . ARRAY « < i ♦ K ) » .6T. 0 .Of«. X - ARRAY 
I ( 1 ♦ M ) ) •(«, 0 

KLLE      - X > AMHAY ( 1 ♦ M ) .LE. ü ■ ( X - AKHAY I   I   *  P   )   .GT> 0 .OR. X - A 
RRAY ( 1 ♦ * ) .Ey. 0 ) 

REPLACE   - X ♦ ARRAY ( 1 ♦ H ) .L£. Ü s X • ARRAY I X ♦ H ) .6T. 0 .OR. X - ARR 
AY < X ■» M ) .ED. 0 
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VCG.KEPLÄCt, SUQHOUmC BlNäCH ( ARHAr. LLNCTH. XI LOOKUPI tRRÜK ) 

CLAOSE    VtRlFICATltK CONclTlON 

1 .NOT. LHHOR 

ANO 

2 SLKUD ( ArtHAY . LtNüTH ) 

ANC 

ARRAY ( 2 ♦ f ) .LT. 0 

ANO 

X • ARHAY ( i ♦ M ) .GT. 0 

AUL 

• X t AHRAY ( ¥   ) .LE. U 

IrtPLitS 

MRHAy ( X + N ) .bTi 0 .OH. *   -   ARRAY I 1 ♦ K ) .EU. 0 

LSIKG AXIOM  2 

RULE      ( PX1 .IKP. PX2 .OH. PXä » = ( ( PX1 .IKP. PX2 > .0«. ( PX1 .IKP. PX3 
) ) 

RtPLACE   ( «NOT. ERHÖH .AND. SCRTCC ( ARRAY . Lt-NGlH ) »ANC. X - ARRAY ( 2 4 Kl 
) .LT> 0 .Al.ü. X - ARRAY ( i * * ) .GT. 0 «AND» - X * ARRAY ( f ) .11, 

0 .IKP. X • ARRAY ( 1 ♦ H ) .GT» 0 'OR. X - ARRAY ( 1 « M > .EO. n ) 

s ( ( .NOT. EHKOK .ANC. SÜKTEÜ ( ARRAY i LENGTH ) .AND. X - ARRAY ( 2 

*  M ) .LT* 0 »AUü. X • ARRAY « 1 ♦ H ) .6T* 0 «AhU. • X ♦ ARRAY ( H   ) 

•LE. 0 .IMP. X • ARRAY ( 1 ♦ N ) .GT. 0 > «OR. « .NOT. ERROR .ANO. SOR 

TED ( AhRAY i LLNGTH > .AND. X - ARRAY ( 2 4 M I .LT. 0 .AND. X - A«KA 

Y l 1 ♦ K I .GT. ü .AUO. - X * ARRAY ( K > .LE« 0 .IMP. X ■ ARRAY ( 1 

♦ 14 > .es. o t > 

") 

VtGtAXIC'Z. SUBROUTINE BlNSCH ( ARRAY, LENGTH« Xi LOOKUP, ERROR ) 

PROOF OF VERIFICATION CONDITION COMPLLTEO 
tJilf-G THL FCLLOi»lUft AXIOMS       H    2 
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i n VtG.P/iThs^ta.btTtJ bOtlKOuTIKE.   filN^CH   (   AKHAY,   LtNGTH«   k«   LOOKl.f,   tRuOH    ) 

U(.L 

19 
iO ( 1) 

?1 ( 1) 
22 ( 1) 
it» < 1) 
20 
27 < 1) 
2b « 1) 
29 ( 1) 
30 
31 
19 
32 

fJATH   SüUKCE   UXT 

hHltt if*!   .I.T, N I 
.  ASSLKT ( I M .LT> K .AUD. ScHrtO < APKAYi LENGTH ) ) .ANC ( < 

•.  AHHAT < K > .LL> X .ANb. X .LT. ARRAY ( N » I .AND. .NOT. tRHOR » 
«.  I 

.   i « ( K ♦ H ) / a 

.  IF ( x »It,   AHHAT ( I > > 

.  CRIF ( X .GT. AhRAV ( I ) ) 
LLaC 
.  tOUtvuP 8 1 
.  K = I 
.   N = I 4 1 
LNOIF 
tNutaHUt 
•»HUE ( F ♦ 1 .LT. N ) 
AabLftT ( ( W .LT. W .ANQ. SORTED I ARRAY« LENGTH » ) .AtvD. ( ( 

«ARRAY ( f ) .LE* X .ANC* X «LT. ARRAY ( N ) ) .AND. .NOT* ERROR I 

O 

o 

VERIFICATION CGNLITICN     SOOItOUTINE blhbCH ( ARRAY, LENtiTHi X, LOOKIIP« ERROR I 

LINE    VERIFICATION CONDITION 

1«    *   *   l   .LT. N 

ANO 

20    M .tT. N .ANO. SORTED ( AHKAY , LENGTH ) .ANO. ARRAY ( M ) .LE. X .AND 
• X .LT. ARRAY < N I «AND. .NOT. ERRbH 

ANO 

22    X .GE. ARRAY I ( M « N ) / 2 ) 

ANC 

2<i    X .LE. ARRAY ( I M ♦ N ) / 2 ) 

ANO 

19    ( < ^ ♦ N > / 2 » ♦ 1 .GC. ( ( P ♦ N ) / 2 ) ♦ 1 

 IMPLIES —  —-. 

32 ( f« ^ N ) / 2 .LT. ( < M ♦ N ) / 2 ) ♦ 1 .AlgO. SORTED ( ARRAY . LENGTH 
) .AND. ARRAY ( ( * * N ) / 2 > .LE« X «AND* X .LT. ARRAY ( ( ( M * N 
) / 2 ) ♦ 1 ) .AND. .NOT. ERROR 
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VCG.H/UhsHiüiStT.a SUBROUTINE BlMitCH I ARRATt LENGTH« X« LOOKUP! ERROR ) 

CLAUSE    VERIFICATION CONClTlON 

1 X • ARRAY < N ) .LT. 0 

ANC 

2 .NOT. LHHOR 

ANU 

3 SORTLO ( ARRAY « LENGTH ) 

AN(J 

<4    X - ARRAY ( ( N ♦ ^ ) / 2 ) .Lfi. 0 

AMU 

5 -  H   *   ¥   .LT. -1 

ANU 

6 - X 4 ARRAY ( K ) .LE. 0 

- IMPLIES ——--  

7 X - ARRAY (l4((N«Ki/2)) .LT. 0 

ANU 

8 • g « AHKAY ( ( N t M ) / 2 ) .LE. 0 

ENTEHEO ExPRbsSlUN 

X s ARRAY ( ( P ♦ N I / 2 ) 

RULE X s ARRAY ( < M ♦ M ) / 2 > 

REPLACE X s ARRAY < ( N ♦ K > / 2 ) 

REPLACE X s ARRAY ( ( N « M I / 2 I 

REPLACE X s ARRAY < i It * K ) / I } 

REPLACE X s ARRAY < i * * * t / 2 t 

RtPLACE   X » ARRAY « ( N ♦ R » / 2 » 

) 
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( «CG,KEPL*Ct. SUBKGUTIlvt BiMSCM ( ARHAY, LtNüTH. Xt LOOKUP. ERHOK I 

CLAUSE 

X 

VCRIFICATICIM   COhOITiCN 

•NOT«   EHROH 

AND 

SORTED   (   ARRAY   1   LfcKbTH   ) 

AND 

- ARHAY   (   N   I   *   ArtHAY   (    (   N  ♦  M   )   /  ?   )   •l.T«   0 

«NO 

- N  ♦  f   .LT.   -X 

ANO 

- AHttAY    (    <   14   ♦   M    »   /   2   »   ♦   AKHAY   I   K   »    .LE.   0 

—   IMPLIES   - — — .——, 

ARRAY    (    (   N   4   X   )   /   2   )   .   ARRAY   tl*{lti*¥i/2)l    .LT.   0 

. 

ENTEHEL EXPRESSION 

SORTED ( ARRAY • LENfeTH ) ■ ( ARRAY ll»- ARRAY I I 4 X > »LT« 0 » »ANO* ( X • 
GE. X ) .AKC. ( I .LI. LENGTH ) 

RLLE     SORTED ( AKKAY I LENGTH ) s I X .GE. 1 »ANC. ARRAY ( I ) - ARRAY ( 1 ♦ 
I ) .LT. 0 .AND. 1 • LENGTH .LT. 0 ) 

REPLACE   SORTED ( ARRAY . LENGTH ) = X .GE. X .ANO. ARRAY ( I ) - ARRAY ( X ♦ I 
I .LT. 0 'ANO. X - LENGTH ,LT. 0 

O 
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VCG.HEPLACt, SUDKOUTIKC blNSCH ( ARRAY« LCNGTH« X« LOOKllP, ERROR ) 

CLAUSE    VERIFICATION (.CNUITION 

1 I .GL. 1 

ANU 

2 AHSAY (II- ARRAY i 1 ♦ I ) .LT. U 

AND 

3 I - LENGTH ,LT. 0 

ANO 

H    »NOT. ERROR 

ANC 

9    - ARKAY (hi*   ARRAY ( ( N * f ) / 2 ) .LT. 0 

ANÜ 

6 -  H  *  H   .LT. -I 

ANLl 

7 - ARRAY ( ( N ♦ M ) / 2 ) * ARRAY i M I .LE. 0 

——- IMPLIES — —— —— 

8 ARRAY ( ( N ♦ M > / 2 ) - ARRAY (l*<(N4N)/2)) .LT* 0 

ENTEREu EXPRESSION 

X s ( K ♦ N ) / 2 

RLLE     I a I I N ♦ M I / f I 

RLPLACE   I ■ I M ♦ P t / I 

RtPLACE   I s ( N ♦ f ) / 2 

RtPLACE   I ■ ( < N ♦ M ) / 2 » 

RtPLACE   I » < I N ♦ M ) / 2 » 

) 

VLG.REPLACE. SUBROUTINE UlNiCM ( ARRAY, LENGTH. X, LOOKllP. tRRÜH > 

PROOF OF VERIFICATION CONCITICN COMPLETED 
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VERIFICATION CONDITIONS FOR SQX 
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V<.6.PATH=2»li3 

LIKE 

1 
7 
a 
9 

17 

RtAL FUNCTION SOX ( X ) 

PATH SOLhCt TEXT 

hEML f OM,.T10N Swx ( X ) 
INITIAL ( X »bC« 0.0 ) 
SQ* = O.U 
IF   ( X .(iT. O.U ) 
FINAL ( SQX • SQX - X ,11,   U.OoOoOS * X ) 

VtfUF ICATIUN CCNCITICN REAL FljNCTION S^X I X ) 

LlNf    VERIFICATION COIvülTlON 

7    X .bE. 0.0 

ANU 

9          X   .LE.   0.0 

    IMPLIES *  - 

17       ( o.o ♦ o.o ) - x .i.e. u.üoooüs * x 

VCG.PATH:2«1«3 REAL FUNCTION sux  I x  > 

PRCCF  OF   VERIFICATION   CONCXTION   COMPLETED 

) 

VCGtrAThs3.1.2t'» REAL   FLNEUOfJ  S8X   (   X   ) 

LINE PAtH   SÜU'CE   TEXT 

1 HEAL   FONCTION   SbX   (   X   ) 
7 INITIAL   (   X   .GE.   0.0    ) 
b üttX   s   o.O 
9 IF   (   X   .GT.   'J.O    ) 

10 (   1) .      T   s   o.S   •   X   ♦   1.0 
11 « 1»    •  hHILE ( Y - X / Y .ttt. 0.00UÜÜ1 • Y > 
12 • 2,    •  •  ASSERT < J x .GE. U.Ü «AivC. Y .GE. 0.0 ) .AND. Y • Y .6T. X ) 

) 
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I WtrUFlCATJUM   (.UNUTlCh hCfii.   FLlN'CTIOh   bUX   (   X   ) 

7 X   .ÜL.   U.O 

AND 

S X   .QT.   0.0 

AMO 

U j   0.5  •   X   »   ♦   1.0   -   (   X   /   «   <   O.S   •   X   )   ♦   1.0   )   >   .GT.   O.OOOOOl   •   <   « 
0.5   •   X   )   ♦   1.0   ) 

UPLUS 

12 X   .GL.   0.0   .ANC.   C   0.5  •   X   )   ♦   1.0   .ÖE.   0.0   .AND.    «    I   O.S  •   X   »   ♦   1.0 
)   •   (   (   0.5  «   X   i   ♦   1.0   I   .6T.   X 

t/lCFATHs}«!.^1« RLAL  FtNCTlUN  bUX   (   X   i 

0 

CLAUSE    WERXflCATlON CCNOiTiOM 

1 - I 0.0000005 • X » ♦ « 0.5 • X > • I X / I 1.0 ♦ C 0.5 • X » ) » .*T. 
l.UOOObl 

ANO 

2 X .61. 0.0 

.. I^PLltS  *  ————— 

3 - X ♦ ( 0.5 • X » ♦ ( 0.5 • X ) ♦ I 0.Ü5 • X • X I .«T. 1.0 

ANO 

<t    X .«it. 0.0 

ANO 

■    0.5 • X .6C. 1.0 

tG.PATH=3i 1 ill .5 

LU.E 

1 
7 
a 
9 

10   ( 1) 
11   { 1) 
17   i \) 

HU<L UNCTION sex ( x ) 

^Alh   SUL^CC   UXT 

RtttL   FUNCTIUli   SdX   (   X   ) 
INITIAL   (   X   .liL.   0.Ü   ) 
SU  *   U.O 
IF   (   X   .6T.   0.0   ) 
.     V   »   0*5   •   X   *   1.0 
.  hHItt ( Y - X / V .6T. 0.000U01 • Y ) 
.  FINAL ( S6X • S»X • X .Lt. O.OOOOOB • X I 

O 
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VtRlFICATIUN C0NC1TICN HLHi.   FLUCTION SCX ( X ) 

LINE    WLRIFICATION CONDITIOM 

7    X .(>£.. 0.0 

ANQ 

S    X .6T. 0.0 

AND 

11    ( O.^j • x I + 1.0 - ( X / ( ( 0.5 ♦ X ) ♦ 1.0 ) . .LL,   0.000001 * ( ( 
0.5 » x ) f 1.0 ) 

IMPLUS 

17    « » ( 0.5 • X > + 1.0 J • ( ( 0.5 • X ) ♦ 1.0 » ) - X .Li» 0.00000.^ • 
X 

VtCPATHsi.l.^.S BtAL FtNCTION SüX ( X » 

CLAUSE    VLHU ICATION LOUCITIUN 

1 - ( U.UOOOObS • X » ♦ < O.b • x ) • ( A / I 1<0 4 | O.S * X ) ) ) .LL. 
1.0000U1 

ANt 

2 X •«!« 0.0 

  iMf-LItS — -  

• I 0.000003 • X ) * ( O.S * X ) * ( 0.5 • X I + ( 0.2S « X « X ) . X 
.Lt. 1.0 

' I 

VtGlPATHs2»^.^ 

11 
12 ( It 
13 I 1) 
1<4 
11 
12 ( 1) 

riLAL FUNCTION bUX ( X ) 

PAlh SüUHCE UXT 

•.HILL ( Y • X / Y .GT. O.UnUUOl • Y ) 
.  AbSLHl ( ( X .bL. u.li .Ai^C Y .GL. Ü.Ü ) .ANÜ. Y * Y .GT. X i 
.Y=0.5»<y*»/Y) 
LNLWHILE 
hhXLC ( Y > X / Y »if« 0.ÜÜÜÜO1 • Y ) 
.  ASSERT ( ( X .Gt. 0.0 .ANC. Y .GE. 0.0 > .ANU. Y * Y .GT. X I 
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^f     zT VtRIFICATIUN CONOITICN riLAL KbNCTION SQX ( X ) 

LINE    VtHIfICATltN CONÜlliUK 

U    T - ( X / Y ) .01. Ü.UOÜ001 * Y 

ANC 

12    X .&t. 0.0 .AuC Y .bC. U.O .At«6« Y • Y .bT. X 

ANO 

IX    (0.6»(Y»IX/Y»))-»X/(ü.9»(Y*<X/y)>)» .6T, 
O.OOOOCl • Ü.5 * ( Y ♦ ( X / Y ) I 

ifPLUS 

12   X .(it, 0.0 .AI»C. Ü.5 ♦ ( Y ♦ I x / Y ) ) .6£. 0.0 «AND. 0.9 * I V ♦ < 
X/Y))*0.S*IV«(X/Y)) .GT. X 

vLGiPATKs2iHt<4 HtAL FLNCTION SOX ( X t 

CLAUSE    WCKIFICATKN CUNOIflON 

1 X .GL. 0.0 

ANO 

2 • ( 0.00OO0OS • Y I - I Ü.000000S • ( X / Y ) > ♦ ( O.S • Y » ♦ ( n.9 
•(X/Y»»-<X/((ü.5*Y>*(ü.5«<X/Y>)»» .6T* 0 

ANO 

3 - < 0.000001 •V)«Y-(X/Y> .6T. 0 

ANO 

4 - X * ( Y • T I .GT. 0 

ANU 

5 V .GL. 0.0 

  IfPLlLS   "  — 

«    ( 0.9 • Y I ♦ ( 0>9 « ( X / Y ) ) .ft, 0.0 

ANO 

7   • X ♦ ( 0.29 * Y « Y ) » ( 0.29 • Y • t X / Y » » ♦ ( 0.25 * ( X / Y > 
• Y » ♦ ( 0.25 «(X/Y)<i(X/r)) .GT. 0 

o 
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LIM 

11 
12 I   1) 
13 (   1) 
1U 
11 
17 

KE.AL   KOMTIOIv   SCX   (   X   ) 

PATH SoLHCE TEXT 

hHiLt ( Y - X / r .GT. ü.üouOOi • Y ) 
.  ASSuHl < ( X .Gt . u.it «ANO» Y .6E« 0.0 ) .AND. Y • Y .GT. X ) 
.  Y = U.5 • < V ♦ X / Y ) 
LNQlkHILC 
„hilt   l T - X / Y ,§?, O.OoUOOl * Y ) 
FINAL ( SOX • SttX - X .LE. O.Oo0003 • X > 

JL 

VtWlFICATlON CONClTlON REAL FIWCTION iOX ( X » 

LINE    VEHIFICATIUN CUMCU1ÜK 

11 Y - ( X / Y ) .GT. 0.O000O1 * Y 

AND 

12 X .GE. 0.0 .AUC. Y •§£. O.ü .»NU. Y * Y .GT. X 

ANO 

H    « 0.5 ♦ ( Y ♦ ( X / Y » ) ) - ( X / « U.S • ( Y ♦ ( X / Y ) ) ) ) .LE, 
0.000001 * 0.5 ♦ ( Y * ( X / V ) ) 

iff-LUS 

17    (0,5»(t*<X/Y»)«0.S»<Y*(X/Y))»-x .LE. O.OnOoO 
3 • X 

WtG.» ATHS^IH.S REAL FUNCTION SUX ( X ) 

CLALSC    VEHXFICATICN LONCXTION 

1    X ,Gt. 0.0 

ANO 

3 - ( O.O00U00S • Y > - I O.UOUUOOs • ( X / Y t i 4 ( 0.5 * Y ) ♦ ( (1.5 
•(X/Y>)-(X/((0.S*Y)«(0.9«(X/Y)))) tit*   0 

9    - ( 0.000001 •Y)«T-(X/Vt .GT. 0 

AND 

<*    - X ♦ ( T • T ) .(iT. 0 

ANO 

9    V .GE. 0.0 

........... IKPUXES --"- —————   -.......-.—.... 

• ( 0.000003 • X ) - X ♦ ( 0.25 • Y • Y ) ♦ « 0.29 • Y • ( X / V ) ) ♦ 
( 0.29 • ( X / Y » • Y ) ♦ ( 0.29 .<X/v»»<X/V»l .LE. n 

) 
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